INPE Report, Version 1.0, December 2006

A Gentle Introduction to TerraME

Tiaco CARNEIRO', GILBERTO CAMARA?
'Computer Science Department, Federal University of Ouro Preto,
Campus da UFOP, Ouro Preto, Brazil
*Image Processing Division, National Institute for Space Research
Av dos Astronautas, 1758, 12227-001 Sao José dos Campos, Brazil
{tiago, gilberto}@dpi.inpe.br

1 Introduction

TerraME is a development environment for spatial dynamical modelling that supports
the concepts of nested cellular automata (nested-CA) . TerraME uses a spatial database
for data storage and retrieval. A spatial dynamic model is a model whose locations are
independent variables. The outcomes of these models are maps that depict the spatial
distribution of a pattern or of a continuous variable. TerraME enables simulation in two-
dimensional cellular spaces. Among the typical applications of TerraME are land
change and hydrological models.

This tutorial provides an introduction to the basic features of TerraME. For a full
description, see . The tutorial has four parts. In section 2, we present the TerraME
architecture. In section 3, we present the basic commands of the TerraME programming
language. In section 4, we show an example of using TerraME for hydrological
modelling. In section 5, we show an example of land change modelling. Before using
this tutorial, the reader should first install TerraME. Instructions for installation are in
the Appendix to this report. Readers interested in an introduction to the principles of
modelling should refer to or . Useful discussions on spatial modelling include .

2 The TerraME Environment

The key part of the TerraME development environment is the TerraM[E interpreter, as
shown in Figure 1. It reads a program written in the TerraME modelling language (a
LUA language extension), interprets the source code, and calls functions in the TerraME
framework. This framework is a set of modules written in C++ that provides functions
and classes for spatial dynamical modelling. It also links to a 7erraLib spatial database.
The TerraView application displays the results of the simulation.

INPE Report, Version 1.0, December 2006

TerraME INTERPRETER

« model syntax semantic checking

.% « model execution

@‘ LUA interpreter TerraView

Eclipse & LUA plugin
« model description
« model highlight syntax

« data acquisition
i « data visualization

« data management

l TerraME/LUA interface] - data analysis

\apOLU
mrjde’\
e1ep

data

TerraME framework 7

- MODEL DATA

TerralLib
database

Figure 1 — The TerraME development environment
The TerraME environment consists of the following parts:
* The TerraME interpreter, which executes the model code.
» TerraLib, a GIS library for spatial database management .

» TerraView is a TerraLib application used for vector and raster data acquisition,
visualisation, and analysis.

e The LUA programming language serves as base for the TerraME modelling
language.

The Eclipse software development platform is the model development
environment, and uses the LUA plugin. Figure 2 shows the architecture of TerraME

architecture. Lower layers provide basic services over which upper layer services are
implemented.

Rondoénia Land-Cover Change Hidrologic Balance Model Species Dispersion Model Climate Model

4

4

‘ TerraME — a LUA programming language extension

| LUA open source interpreter (c++) U
‘ TerraME / LUA interface (c++) [LUA Virtual Machine (c++) \j7
TerraME modelling Signal processing Math libraries ﬁi?:::::l
framework (C++) libraries (C++) (C++) (C++)

TerraLib open source GIS library (C++)

Figura 2 — TerraME architecture

INPE Report, Version 1.0, December 2006

In the first layer, TerraLib offers typical GIS spatial data management and analysis
services, and extra functions for temporal data handling. The TerraME framework
provides the simulation engine and the calibration and validation services. It is an open
source ANSI C++ implementation of the nested-CA model, portable for Windows and
Unix-like operating systems. This framework can be used directly for model
development. Since developing models in C++ can be a challenge for non-programmers,
TerraME provides a high-level modelling language. The third layer of the architecture
implements the TerraME modelling language interpreter and runtime environment. The
TerraME/LUA interface extends LUA with new data types for spatial dynamic modelling
and services for model simulation and evaluation. Using the LUA library API, it exports
the TerraME framework API to the LUA interpreter, so it recognizes the TerraMFE types.
If needed, other C or C++ applications (such as statistical libraries) can have their APIs
exported to the LUA interpreter and integrated in the architecture. The last layer, called
application layer, includes the end-user models.

3 The TerraME Modelling Language: Basic Commands

This section presents the basic TerraME Modelling Language mechanisms for multiple
scale spatial dynamic model representation and simulation.

3.1 TerraME as a LUA Extension

Lua is an extension programming language designed to support general procedural
programming with data description facilities. It also offers good support for object-
oriented programming, functional programming, and data-driven programming. Being
an extension language, Lua has no notion of a “main” program: it only works embedded
in a host client. This host program can invoke functions to execute a piece of Lua code,
can write and read Lua variables, and can register C functions to be called by Lua code.
By using C functions, Lua can be augmented to cope with a wide range of different
domains, thus creating customized programming languages sharing a syntactical
framework . The TerraME Modelling Language is a LUA Programming Language
extension. It uses the LUA extensibility mechanisms to include new data types and
functions.

LUA is a dynamically typed language: variables do not have types; only values do.
There are no type definitions. The basic value types are number (double) and string. The
value nil is different from any other value in the language and has the type nil. Functions
in LUA are first-class values. That is, a function definition creates a value of type
function that can be stored in variables, passed as arguments to other functions and
returned as results. The only structured data type is table. It implements associative
arrays, that is, arrays that can be indexed not only with integers, but with string, double,
table, or function values. For table indexing, both table.name and table["'name"] are
acceptable. Tables can be used to implement records, arrays, and recursive data types.

INPE Report, Version 1.0, December 2006

They also provide some object oriented facilities, such as methods with dynamic
dispatching .

loc = { cover = "forest", distRoad = 0.3, distUrban = 2 };
loc.desfPot = loc.distRoad + loc.distUrban;

loc.reset = function(self)
self.cover = "",
self.distRoad = 0.0;
self.distUrban = 0.0;
end

Figure 3 — The use of associative table and function values in LUA.

Figure 3 shows the use of table and function values. The code creates a table with
three attributes (land cover, road distance, and urban centre distance) and stores it the
variable loc. It calculates a new attribute and adds it to /oc (deforestation potential is the
sum of the road and urban center distances). Finally, it creates a second attribute called
reset and adds it to table loc. It is as a function that receives the table as parameter. This
is indicated by the keyword self.

LUA has a powerful syntactical tool, called constructor. When the modeller writes
name{...}, the LUA interpreter replaces it by name({... }), passing the table {...} as a
parameter to the function name(). This function typically initializes, checks properties
values and adds auxiliary data structure or methods . In figure 5, it constructs the type
MyLoc. When the table L is instantiated, the constructor initializes the attribute desfPot.

function MyLoc(loc)
loc.desfPot = loc.distRoad + loc.distUrban;
end

| = MyLoc{cover = "forest", distRoad = 0.3, distUrban = 2 };
Figure 4 — The use of the constructor in LUA.

To build spatial dynamic models, TerraME includes new value types in LUA using
the constructor mechanism. These values are: CellularSpace, Cell, Neighbourhood,
Scale, Spatiallterator, GlobalAutomaton, LocalAutomaton, ControlMode,
JumpCondition, FlowCondition, Timer, Event and Message. We describe the first three
types and its operations in what follows. A description of the other types is available in .

INPE Report, Version 1.0, December 2006

3.2 The CellularSpace

A CellularSpace is a multivalued set of Cells. It consists of a geographical area of
interest, divided into a regular grid. Each cell in the grid has one or more attributes.
CellularSpaces are stored and retrieved from a TerraLib database, so the modeller
should specify the properties of the CellularSpace before using it, as shown in Figure 5.

-- Loads a TerraLib cellular space
csCabecaDeBoi = CellularSpace {
dbType = "MySQL",
host = "localhost",
database = "CabecaDeBoi ",
user = "",
password = "",
layer = "cells90x90",
theme = "cells",
select = { "altitude", "infCap" }

where = "mask <> ‘noData’";

Figure 5 — Defining a CellularSpace in TerraME.

The host and database values indicate where the input data is stored. The dbType
value identifies the database management system (MySQL, PostgreSQL, etc). The layer
and theme valeus are the names of the TerraLib database layer and theme used as input
data. A layer is a container of data in TerraLib. A theme is a set of spatial objects from
that layer, selected by a restriction. Selection uses a database query over attribute
values, spatial relations, and temporal relations. The select property contains the names
of the cell attributes loaded into the model from the input data set. The property where
filters the data, as in SQL statements. The select and where properties are optional.

In Figure 5, the code creates the CellularSpace “csCabecaDeBoi” from the
“cells” theme, part of the “cells90x90” layer of the “CabecaDeBoi” database. For
each cell, it loads two attributes: elevation (altitude) and infiltration capacity (infCap).
It loads in the CellularSpace only cells whose “mask” attribute value is different from
“noData”.

A CellularSpace has a special attribute called cells. It is a one-dimensional table
of references for each Cell in the CellularSpace. The first Cell index is 1. Figure 6 shows
how to refer to the i-th Cell from a CellularSpace.

-- C is the seventh cell in the cellular space

INPE Report, Version 1.0, December 2006

¢ = csCabecaDeBoi.cells[7];

-- Updating the attribute “infcap” from the seventh cell
c.infcap = 0;

csCabecaDeBoi.cells[7].infCap = 0

Figure 6 — Referencing cells.

3.3 Database management for cell spaces

A TerraME CellularSpace provides three functions for database management. The
load() function loads the cell attributes from the spatial database. The
loadNeighbourhood() function loads a neighbourhood structure. The save() function
stores the desired cell attribute values in the associated Terralib database. The Figure 7
shows how these functions are invoked for the csCabecaDeBoi CellularSpace.

csCabecaDeBoi:load();
csCabecaDeBoi:loadNeighbourhood("Moore");
for time =1, 10,1 do

csCabecaDeBoi:save(time, “sim", {"water"});
end

Figure 7—- Loading and saving cellular spaces in TerraME.

The load() function simply loads a previously defined cellular space in memory
(see Figure 5 for an example of a cellular space). The loadNeighbourhood (name)
loads a neighbourhood structure defined by name. By default, TerraME provides a
VonNeumann (2x2) and a Moore neighbourhood (3x3). The user can create her own
neighbourhood structures using the TerraView application, including the a generalized
proximity matrix, where each cell has a different neighbourhood.

The syntax of the save function is save (time, themeName,
attrNameTable). The function uses the value time as the data timestamp. It stores
data in the TerraLib theme called themeName. It also saves the cell attributes in the
table attrNameTable. If the third value is empty or a nil value, all cell attributes will be
saved. The save(...) function also creates a view named Result in the Terralib
database. It inserts in this view a theme containing the saved data. The name of the
theme is the union of themeName + time. In code shown in Figure 7, the values of
the attribute "water" of all cells from the cellular space "csCabecaDeBoi" are saved
in the themes: "sim1", "sim2", "sim3", and so on.

3.4 The Cell type

A Cell represents a spatial location, its properties, and its nearness relationships. A Cell
is a table that includes persistent and runtime attributes. The persistent attributes are
loaded from and saved to the database. The runtime attributes exist only in memory
during the model execution. A Cell value has two special attributes: latency and past.

INPE Report, Version 1.0, December 2006

The latency attribute registers the period of time since the last change in a cell attribute
value. It is useful for rules that depend of how long the cell remains in a state. The past
attribute is a copy of all cell attribute values in the instant of the last change. For
example, Figure 8 shows the command “if the cell cover is abandoned land during 10
year then the cover transit to secondary forest”. Figure 8 also shows a rule for
simulating rain in a cell, which adds 2mm of water to the past amount of water.

if(cell.cover == "abandoned" and cell.latency >= 10) then cell.cover =
"secFor"; end

cell.water = cell.past.water + 2;

Figure 8 — The latency and past attributes.

3.5 Traversing a cell space
TerraME provides two ways for traversing a cellular space:

e A "for...end" statement: "for i, cell in pairs (csQ.cells) do...end”. The i
and cell variable in the statement are the index and the value of a cell inside the
cells attribute from the cellular space csQ.

* A second-order function (a function that has a function as an argument):
ForEachCell(cs, function()) applies the chosen function to each cell of the
cellular space. This function enables using different rules in a cellular space.

Both choices appear in Figure 9. The cellular space csQ is a terrain area where
there is constant rain (2 mm/hour) during 10 hours. At the end of each iteration, the cell
space must be synchronized (this is explained in section 3.8).

fortime =1, 10, 1 do
for i, cell in pairs(csQ.cells) do
cell.soilWater = cell.past.soilWater + 2;
end
ForEachCell(csQ, function(cell)
cell.soilWater = cell.past.soilWater + 2;
return true; end);
csQ:synchronize();
end

Figure 9 — Traversal of a cell space

3.6 The Neighbourhood type

Each cell has one or more Neighbourhoods to represent proximity relations. A
Neighbourhood is a set of pairs (weight, cell), where cell is a neighbour Cell and weight

is the strength of relationship. There are two ways of creating a neighbourhood in
TerraME:

INPE Report, Version 1.0, December 2006

e By creating a Von Neumann (2x2) ou Moore (3x3) neighbourhood, using
CreateVonNeumannNeighbourhood() or
CreateMooreNeighbourhood();

* By loading an existing neighbourhood, using the loadNeighbourhood ()
function.

In the latter case, the neighbourhood is created from a generalized proximity
matrix or GPM . TerraLib has facilities for creating these types of flexible
neighbourhoods. Please refer to the Terralib documentation for more details on GPMs.
We can operate on the neighbors of each «cell wusing the function
ForEachNeighbour(cell, number, function()), as shown in Figure 10.
ForEachNeighbour receives a function as parameter and traverses the i-th
Neighbourhood of a Cell applying this function to all cells in it. For each cell, the
method getNeighbourhood (i) gets its i-th Neighbourhood. The method getWeight()
returns the intensity of the neighbourhood relationship between the cell and its current
neighbour. In Figure 10, we show a simple example where, for each cell, we print the
weight of all its neighbours.

csq:loadNeighbourhood(“GPM”);
ForEachCell(csQ,
function (cell)
ForEachNeighbour(cell, 0,
function(cell, neigh)
print(neigh:getWeight());
end;
); -- for each neighbor
return true;
end;
); -- for each cell

Figure 11 — Traversing a neighbourhood

INPE Report, Version 1.0, December 2006

The following TerraME code is Conway’s Game of Life. The game uses on a field
of cells, each of which has eight neighbors. A cell is occupied or empty. The rules for
deriving a generation from the previous one are these:

e If an occupied cell has 0, 1, 4, 5, 6, 7, or 8 occupied neighbours, the organism
dies (0, 1: of loneliness; 4 to 8: of overcrowding).

e If an occupied cell has two or three neighbours, the organism survives to the
next generation.

* If an unoccupied cell has three occupied neighbours, it becomes occupied.

The code starts by creating a Moore neighbourhood. Then it iterates until a final
time. At each iteration, it traverses the cell space. For each cell, it applies Conway’s
rules. Note that it uses the cell’s past value as input. Then it updates the present value of
the cell. Finally, the cell space is synchronized.

CreateMooreNeighbourhood(csQ);
csQ:synchronize();
for time = 1, FINAL_TIME, 1 do
ForEachCell(csQ,
function(cell)
count = 0;
ForEachNeighbor(cell, 0,
function(cell, neigh)
if (neigh.value == 1) then
count = count + 1;
end
end;
); -- for each neighbor
-- apply Conway’s rules
if (cell.past.value == 1) and
((count < 2) or (count > 3)) then
cell.value = 0 --- cell dies

end

if (cell.past.value == 0) and (count == 3) then
cell.value = 1 --- cell lives

end

return true; end;
); -- for each cell
csQ:synchronize();
end

Figure 12 — Conway’s Game of Life

INPE Report, Version 1.0, December 2006

3.7 Synchronizing a cell space

TerraME keeps two copies of a cellular space in memory: one stores the past values of
the cell attributes, and another stores the current (present) values of the cell attributes.
The model equations must read (the right side of the equation rules) the attribute values
from the past copy, and must write (the left side of the equation rules) the attributes
values to the present copy of the cellular space. At the correct moment, it will be
necessary to synchronize the two copies of the cellular space, copying the current
attribute values to the past copy of the cellular space. Figure 13 shows how
synchronization works.

1#1]171 1171_
]171 11—1]1—1 11—1
]1—1 ~1]1—1 11—1
past "
............................ synchronize
1 0 | 0f 1]
4t 1* 1
' Il e
present (! §

Figure 13 — Synchronizing a cell space in TerraME

Synchronization should occur after each iteration. For example, in the “Game of
Life” code in Figure 10, after traversal of all cells, we have a “present” cell space which
is different from the “past” cell space. Before the next iteration, it is necessary to
synchronize the cell spaces. As a good modelling practice, in a neighbourhood based
rule, the modeller should only update the attributes of the central cell. The neighbour ‘s
attributes are read-only. The flow of information is always from the neighbours to the
central cell.

INPE Report, Version 1.0, December 2006

4 Examples of physical models in TerraME

In this section presents four different rain drainage models. The examples evolve from a
simples non-spatial model to a spatial model integrated in a geographic database.

4.1 The ""Hello World'' model

The simplest rain drainage model is a non-spatial model that considers all terrain as
point in the space (see Figure 14). The water is a continuous variable Q that collects the
rain input flow. The drainage is proportional to Q, where K is the flow coefficient
constant. It follows that AQ, =2 - K * AQ,; and Q = Z,' AQ,. For a constant rain, Figure
15 shows the simulation results. For each time instant, it indicates the input rain flow
(rain), the water in the system (Q), and the output flow (drainage). The model reaches a
steady state after 10 minutes in the simulation clock. Figure 16 presents the TerraME
source code for this model.

i - _
rain = mm/min drameg water =K * Q
gy

Q

Figure 14 - A non-spatial rain drainage model.

time =1 dEInage
MNon-spatial Rain Drainage Mo del D z 00 00
1 z 0.8 20
F o z : iz
3 Z 18 i3
4 Z 17 4.4
5 Z 18 4. 6
- G Z i5 4.
-y T ramn T z 15 4.3
E <o~ drainage oo
5 —a ——
g e e —————— e 12 z 20
13 Z 2.0
14 z 2.0
15 Z 20
16 Z 2.0
- - - T < 24
BN 15 0 |—4——
time {(min.) 20 2 21

Figure 15 - The amount of water in the system during the simulation.

C =2; --rain/t

INPE Report, Version 1.0, December 2006

K = 0.4; -- flow coefficient
-- GLOBAL VARIABLES
g = 0; input = 0; output = 0;
-- RULES
for time =0, 20, 1 do
-- soil water
q = q + input - output;
-- rain
input = C;
-- drainage
output = K*q;
-- report
print(time.."\t"..input.."\t"..output.."\t"..q);
end

Figure 16 - TerraME code for the non-spatial rain drainage model.

4.2 A simple spatial model

We now consider a 1D model. Space is modeled as a list of locations Q = { q;| Ui =
1.N}, where N = 10. The model executes the same rules with the same parameters in
each space location. The temporal variation of water in each location is equal to the
graphic shown in Figure 15.

rain = 2 mm/min drained water; ~K* g,
E—— qi —

raim = 2 mm/min drained water, - K* g,
R qQz EEE—

rain; = 2 mm/min drained water,~ K* q;
O —— . | e

raing -~ 2 mm/min drained water; ~K* gs
—¥ gs —

raing =2 mm/min drained water, =K* go
E—— Qg —»

rainyy = 2 mm/miny drained waterjp=K* gy
—_—P q10 >

Figure 17 - A 1D spatial rain drainage model.

-- CONSTANTS (MODEL PARAMETERS)
C =2; --rain/t
K = 0.4, -- flow coeficient
-- GLOBAL VARIABLES
g ={};--alDtable
-- RULES
fori=1, 10, 1 do g[i] = 0; end
fortime =1, 20, 1 do
-- rain and drainage

INPE Report, Version 1.0, December 2006

fori=1,10,1do

qlil = q[i] + C;
ali] = qlil - K*qlil;
end

-- report: soil water (Q)
print("t: "..time);
fori=1, 10, 1 do print("["..i.."]: "..q[i]); end
end

Figure 18 - TerraME source code for a 1D model.

Figue 18 presents the TerraME source code for the unidimensional spatial drainage
model. The variable q is a list, which locations @; have been initialized with the value O
(zero). The "for...end" statement from TerraME Modelling Language has been used to
traverse the list.

4.3 A 2D spatial model

We can now extend the model to a 2D grid. Figure 19 shows the conceptual model for a
2D spatial drainage model, usinga grid O ={ q;;li=1l.nand [Jj=1..n }.

91119121913 Jl.m
rain;; = 2mm/min Q192923 7 |Qm drained water;; = K * g5
—_— S
a1 | 9n2 | Ga3 -t Gpm
\ J

Figure 19 - A 1D spatial rain drainage model.

The TerraME source code for this model is in Figure 20. The variable g represents
s a bidimensional grid. To traverse the space representation the modeller has used a

block of code containing two nested "for...end" statements.

-- CONSTANTS (MODEL PARAMETERS)
C = 2; --rain/t

K = 0.4, -- flow coefficient

-- GLOBAL VARIABLES

q=1{}

-- RULES

fori=1, 10, 1do
qlil = {};

forj=1,10,1do
qlilljl = 0;
end

INPE Report, Version 1.0, December 2006

end
for time = 0, 20, 1 do -- rain and drainage
fori=1,10,1do
forj=1,10,1do
qlilljl = qlilljl + C;
qlilljl = qlillj] - K*qlillj1;
end
end

end

Figure 20 - The TerraME source code for the 2D drainage model

4.4 A spatial model integrated to a geographic database

In previous examples, we have not discussed how to read data. TerraME reads data from
a TerraLib spatial database, as described in section 3.2. Figure 21 presents the TerraME
code of the rain drainage model integrated to a TerralLib database.

rain;; = 2mm/min drained water;; = K * g;;

—_—

ik
]

Figure 20 - The spatial rain drainage model integrated to a geographical database.

The cell space csQ is retrieved from a layer in a TerraLib geographic database.
For this example, we use the "cabecaDeBoi.mdb" database, available from the
TerraME site. Each cell has an attribute called soilWater. The function load(),
retrieves data and initializes the cells. We use the ForEachCell function to traverse the
cellular space. The functions save() stores the soil water distribution at each simulation
time step. A view called "Result" is created in the database. At each simulation step, it
adds a new theme to this view to store the current values of the "soilWater" attribute.
The reader may use the TerraView software to explore the data.

-- CONSTANTS (MODEL PARAMETERS)
C = 2; --rain/t
K = 0.4; -- flow coefficient

INPE Report, Version 1.0, December 2006

FINAL TIME = 20;
-- PART 1 - Retrieve the cell space from the database
csQ = CellularSpace{

}

dbType = "ADQ",

host = "localhost",

database =" c:\\TerraME\\Database\\cabecaDeBoi.mdb",
user ="",

password = "",

layer = "cellsLobo90x90",

theme = "cells",

select = { "height", "soilWater" }

-- RULES

csQ:load();
CreateMooreNeighbourhood(csQ);
csQ:synchronize();

for time = 1, FINAL_TIME, 1 do

-- PART 2: It’s raining in the high areas
ForEachCell(
csQ,
function(cell)
if(cell.height > 254) then
cell.soilWater = cell.past.soilWater + C;
end
return true;
end
);

csQ:synchronize();

-- PART 3: create a temporary variable to store the flow
ForEachCell(csQ,
function(cell) cell.flow = O; return true; end);

-- Calculate the drainage and the flow
ForEachCell(csQ,
function(cell)
-- PART 4: calculate the drainage
cell.soilWater = cell.past.soilWater -
K*cell.past.soilWater;
end

)

for i, cell in pairs(csQ.cells) do
-- count the lower neighbors
countNeigh = 0;
ForEachNeighbour(cell,0,
function(cell, neigh)
if (cell ~= neigh) and
(cell.height >= neigh.height) then

countNeigh = countNeigh + 1
end

INPE Report, Version 1.0, December 2006

end);
-- PART 5: calculates the flow to neighbors
if(countNeigh > 0) then
flow = cell.soilWater/countNeigh;
-- send the water to neighbors

ForEachNeighbour(cell, 0,
function(cell, neigh)
if (cell ~= neigh) and

(cell.height > neigh.height) then
neigh.flow = neigh.flow + flow;
end
end
);
end
end
ForEachCell(¢csQ,
function(cell)
cell.soilWater = cell.flow;
return true;
end
);
csQ:synchronize();
-- report: soil water
print("t: "..time);
if (time == FINAL TIME) then
csQ:save(time, "water", {"soilWater"});

end

Figure 21 - The TerraME source code for a spatial model inside a geographical
database.

INPE Report, Version 1.0, December 2006

4.5 A Simple Hydrological Model

We now show a rain drainage model using TerraME. This model simulates the rain
drainage using a digital terrain model of a village in Minas Gerais state, Brazil, called
“Cabeca de Boi”. The data is available from the TerraME site, in a database called
“cabeca de boi.mdb” (see Figure 22).

rain;; = 2Zmm/min

E—

drained water;; = K * g;;

S

Figure 22 - The spatial rain drainage model using a DTM.

Figure 23 presents the TerraME source code the spatial rain drainage that uses the
terrain elevation data in model rules. Each cell has two attributes: soilWater and
height. At each simulation step, the code calculates the input rain flow. The cells send
their water to their lower neighbours. The model calculates how much water each cell
sends to its neighbours, and stores the result in a new cell attribute called flow. Then,
the model traverses the cellular space again, and, at each cell, the value of this new
attribute is added to the attribute soilWater. The program has the following parts:

e Retrieve the cell space from the database (using the CellularSpace
constructor.

* Simulate rain in the high areas of the terrain using the ForEachCell function
with cell.soilWater = cell.past.soilWater + C. Syncronize the cell space
after this simulation.

* Create a temporary variable to store the flow, using ForEachCell.
* Calculate the drainage from the soil water stored in the cell.

e Calculate the flow, which is the non-drained soil water divided equally among
the neighbours.

* Update the water in the cell from the accumulated values in the temporary
attribute flow.

INPE Report, Version 1.0, December 2006

-- CONSTANTS (MODEL PARAMETERS)
C =2; --rain/t
K = 0.4, -- flow coefficient
FINAL TIME = 20;
-- PART 1 - Retrieve the cell space from the database
csQ = CellularSpace{
dbType = "ADQ",
host = "localhost",
database = " c:\\TerraME\\Tutorial\\cabecaDeBoi.mdb",
user = "",
password = "",
layer = "cellsLobo90x90",
theme = "cells",
select = { "height", "soilWater" }
}
-- RULES
csQ:load();
CreateMooreNeighbourhood(csQ);
csQ:synchronize();

for time = 1, FINAL TIME, 1 do
-- PART 2: It’s raining in the high areas
ForEachCell(
csQ,
function(cell)
if(cell.elevation > 254) then
cell.soilWater = cell.past.soilWater + C;
end
return true;
end
);
csQ:synchronize();

-- PART 3: create a temporary variable to store the flow
ForEachCell(csQ,
function(cell) cell.flow = 0; return true; end);

-- Calculate the drainage and the flow
ForEachCell(csQ,
function(cell)
-- PART 4: calculate the drainage
cell.soilWater = cell.past.soilWater -
K*cell.past.soilWater;
cell.flow = 0;

-- count the lower neighbors
countNeigh = 0;

ForEachNeighbour(cell,0,
function(cell, neigh)
if(cell.elevation >= neigh.height) then
countNeigh = countNeigh + 1

INPE Report, Version 1.0, December 2006

end
end);
-- PART 5: calculates the flow to neighbors
if(countNeigh > 0) then
flow = cell.soilWater/countNeigh;
-- send the water to neighbors
ForEachNeighbour(cell, 0,
function(cell, neigh)
if(cell.height > neigh.height) then
neigh.flow = neigh.flow + flow;
end
end
);
end
end
ForEachCell(csQ,
function(cell)
cell.soilWater = cell.flow;
return true;
end
);
csQ:synchronize();
-- report: soil water
print("t: "..time);
if (time == FINAL_TIME) then
csQ:save(time, "water", {"soilWater"});
end
end

Figure 23 - The TerraME source code for a simple hydrological model.

INPE Report, Version 1.0, December 2006

S Examples of land change models in TerraME

This section presents TerraME examples for a different problem: modelling of land
change. We will consider the database “amazonia.mdb”, which contains a 100 x 100
km2 cell space with data related to deforestation in Amazonia. Figure 24 shows a
picture of the deforestation for each cell. This data is a simplified version of the
database used in . The attributes of the cell space are:

» defor: percentage of deforestation;

* pop_dens 96: population density from 1996 census;

* pop_tx _urban_96: urbanization rate from 1996 census;

* pop_pc_migr_91_96: migration rate from 1991 to 1996;

* agr_area_small: percentage of cultivated area for small farms;
e agr_area_medium: percentage of cultivated area for medium farms;
e agr_area_large: percentage of cultivated area for large farms;
» dist_urban_areas: average distance to urban areas;

» dist_roads: average distance to roads;

e conn_markets_inv_p: strength of connection to markets

* clima_humi_min_3_ave: humidity in the three driest months;
* clima_precip_min_3_a: precipitation in three driest months;

* soils_fert B1: average soil fertility

» prot_alll: percentage of protected areas in 1996

» prot_all2: proposed percentage of protected areas in 2006

0 0000

Figure 24 — A cell space of deforestation in Amazonia

INPE Report, Version 1.0, December 2006

The model considers a fixed demand for change, which will be allocated spatially. It
calculates the potential for change at each cell. Then, it divides the demand as a
proportion of the potential of change. We will consider three models: a simple diffusive

model, a simple regression model, and a spatial regression model.

5.1 A spatial diffusive model for land change

Consider a spatial model that allocates 30.000 km?2 of deforestation in Amazonia for 10
years. The potential of change for each cell is the average of neighbours’ deforestation.

The allocation function uses is proportional to the cell’s potential, divided by the total
potential for change. The result is shown in Figure 25 and the model is shown in Figure

26. It works as follows:

1.
2.
3.

Reads the data from the database (command csQ = CellularSpace{...);
Creates a 3x3 neighbourhood (CreateMooreNeighbourhood (csQ));

Defines a new attribute for potential for change (using the command
ForEachCell(.. cell.pot=10...);

Calculate the change potential for each cell. This requires a traversal of the cell
space (for...). The potential for change for a cell is the average of its neighbour’s
deforestation.

Assign the demand based on the potential for each cell. This needs a second
for... loop. This loop is inside an allocation loop that considers the case where
the change potential for a cell may exceed 100% of deforestation.

Syncronize the cell space after each time step and save the last time step.

ol x|
View Theme Analysis Operation Help =18 x

o DxMFxrEL i | L L3N QX|[FEmm -
x|

Figure 25 — Result of the diffusive model after 10 years.

INPE Report, Version 1.0, December 2006

-- CONSTANTS (MODEL PARAMETERS)
CELL AREA = 10000;
FINAL TIME = 10;
ALLOCATION = 30000;
LIMIT = 30;
-- GLOBAL VARIABLES
csQ = CellularSpace{
dbType = "ADO",
host = "localhost",
database = "c:\\TerraME\\Database\\amazonia.mdb",
user ="",
password = "",
layer = "celulas100",
theme = "dinamica",
select = {"defor"}
}
-- RULES
csQ:load();
CreateMooreNeighbourhood(csQ);
csQ:synchronize();
for time = 1, FINAL TIME, 1 do
print("t: "..time);
-- initialize the potential
for i, cell in pairs(csQ.cells) do
cell.pot = 0;
end

total_pot = 0;
for i, cell in pairs(csQ.cells) do
-- Calculate the change potential for each cell
countNeigh = 0;
ForEachNeighbour(cell, 0,
function(cell, neigh)
-- The potential of change for each cell is
-- the average of neighbors’ deforestation.
-- fully deforested cells have zero potential
if (cell.defor < 1.0) then
cell.pot = cell.pot + neigh.defor;
countNeigh = countNeigh + 1;
end
); -- for each neighbor
if(cell.pot > 0) then
-- increment the total potential
cell.pot = cell.pot / countNeigh;
total pot = total pot + cell.pot;
end
end; -- for each cell

-- ajust the demand for each cell so that
-- the maximum demand for change is 100%

INPE Report, Version 1.0, December 2006

-- adjust the demand so that excess demand is
-- allocated to the remaining cells
-- there is an error limit (30 km2 or 0.1%)
total_ demand = ALLOCATION;
while (total_demand > LIMIT) do
print("total_demand: "..total_demand);
for i, cell in pairs(csQ.cells) do
if (cell.pot > 0) then
prop_cell = cell.pot/total_pot;
newarea = prop_cell* total demand;
cell.defor = cell.past.defor +
newarea/CELL_AREA;
if (cell.defor >= 1) then
total pot = total pot - cell.pot;
cell.pot = 0;
excess = (cell.defor - 1)*CELL_AREA;
cell.defor = 1;
else
excess = 0;
end
-- adjust the total demand
total_demand = total_demand - (newarea - excess)
end
end
csQ:synchronize();
end

if (time == FINAL_TIME) then
csQ:save(time, "deforl”, {"defor"});
end
end

Figure 26 - The TerraME source code for a simple diffusive land change model.

INPE Report, Version 1.0, December 2006

5.2 A regression model for land change

We will now consider a regression model based on three driving forces: distance to
urban centres, connection to markets, and protected areas. The potential for change is
based a linear regression between the cell’s current deforestation and the expected
deforestation, as follows:

» Calculate the expected deforestation as

expected = -0.45*log (distance to urban areas) + 0.26*(connection to
markets) -0.14*(protected areas) + 2.313

* Calculate the potential for change as
cell.pot = expected - cell.defor

* Normalize the potentials (since there may be negative potentials) and allocate
30.000 km?2 for 10 years.

This model is a simplified version of the detailed deforestation model developed
by . Please see that document for details on the model. The model code is shown in
Figure 27 and the result in Figure 28.

-- CONSTANTS (MODEL PARAMETERS)
CELL_AREA = 10000;
FINAL TIME = 10;
ALLOCATION = 30000;
LIMIT = 30;
-- GLOBAL VARIABLES
csQ = CellularSpace{
dbType = "ADQ",
host = "localhost",
database = "c:\\TerraME\\Database\\amazonia.mdb",
user ="",
password = "",
layer = "celulas100",
theme = "dinamica",
select= {"defor", "dist_urban_areas",
"conn_markets_inv_p", "prot_all2" }
}
-- RULES
csQ:load();
CreateMooreNeighbourhood(csQ);
csQ:synchronize();
for time = 1, FINAL TIME, 1 do
print("t: "..time);
-- initialize the potential
for i, cell in pairs(csQ.cells) do
cell.pot = 0;
end

total pot = 0;
for i, cell in pairs(csQ.cells) do
-- The potential for change is the residue of a

INPE Report, Version 1.0, December 2006

-- linear regression between the cell’s
-- current and expected deforestation
-- according to the following model:
if (cell.defor < 1.0) then
expected =
- 0.45*math.log10 (cell.dist_urban_areas)
+ 0.26*cell.conn_markets_inv_p
- 0.14*cell.prot_all2
+ 2.313;
if (expected > cell.defor) then
cell.pot = expected - cell.defor;
total_pot = total_pot + cell.pot;
end
end
end; -- for each cell
-- adjust the demand so that excess demand is
-- allocated to the remaining cells in an error limit (0.1%)
total_demand = ALLOCATION;
while (total_demand > LIMIT) do
for i, cell in pairs(csQ.cells) do
if (cell.pot > 0) then
prop_cell = cell.pot/total_pot;
newarea = prop_cell* total demand;
cell.defor = cell.past.defor +
newarea/CELL_AREA;
if (cell.defor >= 1) then
total_pot = total_pot - cell.pot;
cell.pot = 0;
excess = (cell.defor - 1)*CELL_AREA;
cell.defor = 1;
else
excess = 0;
end
-- adjust the total demand
total demand = total demand - newarea + excess;
end
end
csQ:synchronize();
end
if (time == FINAL_TIME) then
csQ:save(time, "defor2 ", {"defor"});
end
end

Figure 27 - The TerraME source code for a linear regression land change model.

INPE Report, Version 1.0, December 2006

B TerraView 3.1.3 - [Display] -2 x]

“ Eile Show Infolayer View Theme Analysis Operation Help _lBx

[BrME gesoE o xS SER i |£] L N[x[[EEE -
_— ¥

o
e
-0
o
|

£ [V Resut

0 [Edetorto
w0 [Tldefortio
L0 Fldetor2io

Figure 28 — Result of land change model based on linear regression

5.3 A combined diffusive/regression model

We will now consider a spatial regression model based on four driving forces: the
deforestation on the neighbours, distance to urban centres, connection to markets, and
protected areas. For a detailed discussion of the impact of neighbours on deforestation,
see . The potential for change is based on the residues of a spatial regression between
the cell’s current deforestation and the expected deforestation according to the following
model:

* Calculate the expected deforestation as

expected = 0.73*log10(AVERAGE(neighbor deforestation))
- 0.15*log10 (distance to urban centres)
+ 0.05*(connection to markets)
- 0.07*(protected areas) + 0.7734;

* Calculate the potential for change for each cell as
potential = expected - deforestation

* Allocate 30.000 km?2 for 10 years for all cells with positive potentials. Note there
may be negative potentials, which are cells with more deforestation than
expected. In this case, there is no change for the cell.

This model is a simplified version of the detailed deforestation model developed
by . The model code is shown in Figure 29 and the result in Figure 30.

INPE Report, Version 1.0, December 2006

-- CONSTANTS (MODEL PARAMETERS)
CELL_AREA = 10000;
FINAL TIME = 10;
ALLOCATION = 30000;
LIMIT = 30;
-- GLOBAL VARIABLES
csQ = CellularSpace{
dbType = "ADQ",
host = "localhost",
database = "c:\\TerraME\\Database\\amazonia.mdb",
user ="",
password = "",
layer = "celulas100",
theme = "dinamica",
select= {"defor", "dist_urban_areas",
"conn_markets_inv_p", "prot_all2" }
}
-- RULES
csQ:load();
CreateMooreNeighbourhood(csQ);
csQ:synchronize();
for time = 1, FINAL TIME, 1 do
print("t: "..time);
-- initialize the potential
for i, cell in pairs(csQ.cells) do

cell.pot = 0;
cell.ave_neigh = 0;
end

for i, cell in pairs(csQ.cells) do
-- Calculate the average deforestation
countNeigh = 0;
ForEachNeighbour(cell, 0,
function(cell, neigh)
-- The potential of change for each cell is
-- the average of neighbors’ deforestation.
if (cell.defor < 1.0) then
cell.ave_neigh = cell.ave_neigh
+ neigh.defor;
countNeigh = countNeigh + 1;
end
end
); -- for each neighbour
-- find the average deforestation
if(cell.defor < 1.0) then
cell.ave_neigh = cell.ave_neigh / countNeigh;
end
end; -- for each cell

total_pot = 0;
for i, cell in pairs(csQ.cells) do
-- Potential for change
if (cell.defor < 1.0) then
expected = 0.73*cell.ave neigh

INPE Report, Version 1.0, December 2006

- 0.15*math.log10(cell.dist_urban_areas)
+ 0.05*cell.conn_markets_inv_p

- 0.07*cell.prot_all2

+ 0.7734;

if (expected > cell.defor) then
cell.pot = expected - cell.defor;
total pot = total pot + cell.pot;
end
end
end; -- for each cell

-- adjust the demand for each cell

while (total_demand > LIMIT) do
print("total demand: "..total demand);
for i, cell in pairs(csQ.cells) do
if (cell.pot > 0) then
prop_cell = cell.pot/total_pot;
newarea = prop_cell* total demand;
cell.defor = cell.past.defor +
newarea/CELL_AREA;
if (cell.defor >= 1) then
total_pot = total_pot - cell.pot;
cell.pot = 0;
excess = (cell.defor - 1)*CELL_AREA;
cell.defor = 1;
else
excess = 0;
end
-- adjust the total demand
total demand = total demand - newarea + excess;
end
end
csQ:synchronize();
end
if (time == FINAL_TIME) then
csQ:save(time, "defor3 ", {"defor"});
end

end

Figure 28 — Code for land change model based on spatial regression

INPE Report, Version 1.0, December 2006

Terrav’lew 3.1.3 - [Display]

=l81x]

= File Show Infolayer View Theme Analysis Operation Help =8 x

—
frocd

¢ ([14285715 =]

N

Views/Themes

SR ¥ celulas_100

w00 [T dinamics
w0 [Flcelus100
w0 [iuce_model_1
-0 [iuce_model_2
=

-0 defor3_10.defor10

3t Result

Figure 30 — Result of land change model based on spatial regression

References

INPE Report, Version 1.0, December 2006

ANNEX - INSTALLING TERRAME

This section shows how to install TerraME architecture in the Microsoft Windows

platform. Unfortunately, the TerraME version for Linux is not ready yet.
Installing the TerraME Environment

Download TerraME.zip from www.dpi.inpe.br/cursos/environmental_modelling.
Decompress the file to the C:\TerraME directory. It contains the directory TerraME,

with the LUA interpreter and the TerraME development environment.

Installing the Databases

Download from www.dpi.inpe.br/cursos/environmental modelling the databases:

* “CabecadeBoi.mdb” — a TerralLib database in Access format, containing data

for the examples in hydrological modeling.

* “amazonia.mdb”- a TerraLib database in Access format, containing data for the

examples in LUCC modeling.
Copy theses files the C:\TerraME\Database directory.

Installing the TerraView application

Install the TerraView application available from www.terralib.org. After TerraView is

installed, visualize the databases cabecadeBoi and amazonia.

Installing the Eclipse Software Development Kit
Install the Eclipse Software Development Kit (Eclipse SDK) application, obtaining the

latest version from the Eclipse site (www.eclipse.org). At the time of this writing, the

SDK is contained in the file "eclipse-SDK-3.2.1-win32.zip". Copy this file to the "c:\"
directory and uncompress it (Figures A.l and A.2). Create a short-cut to the

"eclipse.exe" application and move this short-cut to the desktop, Figure A.2.

http://www.eclipse.org/
http://www.terralib.org/
http://www.dpi.inpe.br/cursos/environmental_modelling

INPE Report, Version 1.0, December 2006

Pastas =

Nome =

Tamanho | Tipo

@ Desktop
ID Meus documentos
= 4 Meu computador

[C)Arquivos de programas
() Documents and Settings
[Z3Program Files

Pasta de arquivos
Pasta de arguivos
Pasta de arquivos

e)SonySupport Pasta de arguivos
Bl e Disco local |C:) CswWwIN Pasta de arguivos
(=) Arquivos de programas ytemp Pasta de arguivos
() Documents and Settings [TerraME Pasta de arguivos
[Program Files CIWEP Pasta de arquivos
() SonySupport CIWINDOWS Pasta de arquivos
3 SWWIN [#Jeclipse-5DK-3.2.1-win32.zip 123.696 KB Pasta compactada ..
[temp
2 TerraME
= WEP

[WINDOWS
< Disco local (D:)
& Unidade de DVD/CD-RW (F:)
“w* Cartdo de memdria - MG (H:)
% Gilberto (Z:)
[Painel de controle
) Documentos compartilhados
I5) bax - documentos
1) dpi - documentos
I gilberto - documentos
%J Meus locais de rede
2l Lixeira

4] | |

Figure A.1- Move the file "eclipse-SDK-3.2.1-win32.zip" to the C:\ directory.

Arquivo Editar Exibir Favoritos Ferramentas Ajuda | f,"
@-0- 3]s 2 X 9@
| Pastas X || Nome =« |
i @ Deskiop =] @coniiguralion
| ﬂ Meus documentos h_jfe;.-ztuilr‘e:
= ¢ Meu computador gfeagme

= % Disco local (C:)
i3 Arguivos de programas
I Documents and Settings

.eclipseproduct
= eclipse.exe
“declipse.ini

=l 153 eclipse ®epi-v10.ntm|
) eclipse &) notice.htm|

2 plugins startup.jar
() Program Files
I SonySupport
I SWWIN
B 3 temp
) Gilberto Temp

I TerraME

[WEP

M o _I;I
1] | » 1 | w0

Figure A.2 - Uncompress the "eclipse-SDK-3.2.1-win32.zip" and create a shortcut the
the “eclipse.exe” file.

Installing the LUA Plugin for Eclipse
Next, you should install the LUA plugin for Eclipse, available from the site

http://www.ideais.com.br/luaeclipse/. Unzip the file "luaeclipse_0.5.0.zip" and move the

"luaeclipse_0.5.0" uncompressed directory to the "c:\eclipse\plugins\" subdirectory

under the Eclipse installation directory (Figure A.3).

http://www.ideais.com.br/luaeclipse/

INPE Report, Version 1.0, December 2006

5 LuaEclipsePlugin __ ™ plugins 153
Arive Edter Evbr Favoritos Fewamentss Ajuda > grquvo Egitar Egbir Favoritos Feramentas Ajda ar
@ " s :? Pl L= ’ e <’ ? Pl L~
Endereqo (i) Ci'\Program fles TemaME LUALuaEdipsePiugin v kv Epdereqo |3 C:Program fles\edipse \plugns hi I:
Pastas X home Pagtas X Nome & A

B () MSOCache -~ Abrir 5 23 Program fles A ¥ org.edipse.ui.Forms_3. 1.0.jar
= 3 Program fies Explocar 2 £ edpse :Hufq.ech&e_u.sde_l L1ljar
*) echpse B Extrar arguives... 3 configuration 1) org.ecipse.ui.intro_3. 1. 1.jar
=) TemaME B Extrar squ ® 3 feabures Elw.m_u.prmnam.r.__
(0 Database B Exirar para usedipse_0.5.01 = I3 pugins Hw,mu,m1_3_1, 1.jar
(2 Documentation Hlscan with a-squared Free B C3 ksedpze_0.5.0 5] org.ecipse. i win32_3. 1.0, jar
) j E:s: : Sean with AVG Free & 3 org. Lant_1 ;Ew,gdpsg,w,wmm.mt...
=t ¥ Shred Fie B [org. Jeoene (5] org. edipse i workbendh_3.1...
£ BockHTML bk s i apache ! 5
£ LusEdpsePugn @ 3 orgedpseheipw B orgedpse.u_3. L Ljar
£ Models Ervviar para v # 23 org.edipse.jdt.del Elm.m.mm.mﬁgﬂt--
3 Presentation R 3 |2 org.edipee. jdt.dox Ewmmﬁ!mmi
o Terat® Copiar 3 3 org.edipsejdtdor 1) org.edpse.update.core 3. 1....
(3 springdh B () org.edpsefdtan 1] 00 ecpse.update scheduer...
3 temp 3 Criar ataho # 3 org.edipsejdtjun 1) org.eciose.update.ui 3.1 Lijar
- L T ot (O org-edipse jdtsow) RSN v
Exirair arquivos pars pasta stusl e 8 i) -]]}
| 1 objetn(s) seleconada(s)
Figure A.3 — Installing the LUA plugin for eclipse.

Configuring a TerraME project in Eclipse

Next, you should configure an Eclipse to use TerraME. You should start Eclipse. Then,

Eclipse asks to user to select the working directory. This directory is the "workspace"

(Figure A.4). You should choose the TerraME installation directory as your workspace

directory.

= Workspace Launcher

Select a workspace

Eclipse SDK stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace:

I¥ Use this as the default and do not ask again

C:\TerraME

j Browse...

o]

Cancel |

Figure A.4 - Choose the "c: \TerraME" as your workspace directory and close the

Eclipse SDK Welcome screen.

INPE Report, Version 1.0, December 2006

Inside the workspace, create a new LUA project, clicking in the "New...Project”
option from the "File" menu. Select a LUA Project (see Figure A.5) and in the dialogue
box "New Project", type the name of your project (see Figure A.6). We have used the
name "MyProject". Then, click on the buttons "Finish" and "Cancel". Create a new
model file using "New...\File" from the "File" menu. In the "New file" dialogue box,
enter the model name (Figure A.7). We have used the name "MyModel.lua". The ".lua"

extension is required.

£ Java - Eclipse SDK
[l Edit Source Refacior Nawgate Search Project Run Window Help

Open: Fie. ..
B Package = Hew Project
Class
@ Select a wizard o
0 Interface "
Create & new Lus projact.
ukl G Eru“
- (& Arrotation
al i Source Folder Wit
| Foider (22 Java Project
 Fle $ Java Project from Existing Ant Buldfie
Untitied Text Fie I Phag-n Pragect
Befresh F5 * = VS
Convert Line Delimiters To ¥| [Mk Test Cage + (& Java
- == L
= o B o roec
" (3 Plug-n Development
Swabch Workspace... =
(= Smple
23 Import.,
L Bxport... [£: Protéems I . Jevadoc Dedar
0 errors, O warnings, 0 infos
| Deseription
1 elivordliun [MyPropect]
Euit

Figure A.5 - Create a new LUA project.

INPE Report, Version 1.0, December 2006

& New Project |z|

Lua Project

Create a new Lua Project |

Praoject name: I MyProject
Project contents
¥ Use default

< Back J [Hext = I Einish Cancel I

Figure A.6 - Choose your project name and click on the buttons "finish" and "cancel".

[

Java - Eclipse SDK

Fle Edt Source Refpcier Manigate Search Project Rum Window Help
e i - {} .{L - |G- E Hew Fille
=0 File
Create & rew fle rescurce.
J
- e
] - .. e o et s et ok
GoInto
H Padage [myPraect
Crpan in Mewy Window -
Coery Crrlel O Triterface = MyPropect
i Faste Cirl+¥ G eum
X Delete Dusiste (@ Arrtation
Budd Path ¥ i Source Folder
A 1 fesT ¥
Roefactin Attt £ Fo
L3 Export. .. " Unvtigied Tiext Fis
3 Refresh E5 &Y it Test Case
Ciose Praject % Oher..... Cil
Run As v [mesoud
Db As "
Team ¥ File psme: | MyModel lua (
Compars Wigh L
Resbare Fom Local Hstory. .. feve e
PDE Tocls L
Propertes AlteEnter
elyProgect
Bah | e |

Figure A.7 - Create a new model file and provide its name.

Type the program shown in Figure A.8 inside the "MyModel.lua" file.

print ("Hello World");

Figure A.8- This model in TerraME prints "Hello World".

INPE Report, Version 1.0, December 2006

To run this model, you should configure Eclipse to use the TerraME Interpreter to

run the model file. Create a new configuration as shown in Figure A.9. Then, select the

option "Run..." from the "Run" menu. Next, select the option "LUA Application" in

the "Configurations" list box and click on the button "New" from the "Run" dialog

box. Figure 2.16 shows the dialogue boxes where you can choose the configuration name

and the file that should be executed when the Eclipse is asked to run the project.

£ Java - MyModel. lua - Eclipse SDK EE®E
Piz Edt Navigate Sesrch Project Run Window Help
M@ B-0-Q- | EHE- ™ e -
Creabe, manade, a L REE !g!.lral:iuns =
[Packsge Expiorer 53 | 1B 1 MyConfig i |; ii
Rus As
= Ik MyPrapct Corfiguratons:
MyModel iy
ol Drgacise Favorted. .. ® Edces il
B leva Applet -
[Java dophenton B Perpacsves |
Ju Mt These settings associate 3 perspecive with Lua Apphcation launch configurations. A
JU Mrit Pugn Test different perspective mary be assooabed with each supperted lsunch mode, and can
E optonaly be opened when a configuraton i laundhed or when an applcabion suspends
wia the Debug prefienences. To indcabe that & perspective should rot be opened, select |
F= SWT Applcation Tore".
B [’-cr\-e ;i
£ Probiems &1 . Jaedoc | Deds
0 mmors, O wamings, 0 infos
| Desorigeen
Rgstore Defaults |
New [omon || et |
e] o=

Figure A.9 - Choose the option "Run..." from the "run" menu. In the "Run" dialogue

box, select "Lua Application" and click on the button "New".

INPE Report, Version 1.0, December 2006

& Run

Create, manage, and run configurations e
D Drvald Lus fle. ‘; i i
Configrators: bame: [MyConig
i Edipse Applcation
) Jva Apgiet =
71 3ava Appicaton B Fle | seguments| T Envrooment | [Gommon |
oo Jnit Pregect:
JU it Plug-n Test
- é’ Lua Apphcation [Mproect Browse...
& tew_configuraten Fie:
= sWT apgleation I ==
e Delete Reyert
P

& File Selection

Choose the Lua file that represents the application entry point:

2 MyModel.lua

| oK I Cancel

Figure A.10 — Define the file to be executed in the configuration

INPE Report, Version 1.0, December 2006

In the panel "Environment" from the dialogue box "Run", include the
"TerraME.exe" application as the interpreter (Figure A.11). Click on the button "New"

and provide the name and the complete path to the "TerraME.exe" interpreter.

]
Create, ge, and run config ions ;5

TR E-
=S [E3 Mame: |LuaCon§ig

type filter text - -

— File| Arguments [T B | Common

@ Eclipse Application I

.- Equinox OSGi Frame MLl

[Java Applet TerraME j

+.-[3] Java Application N |

L Je Junit —CEEE =

‘ﬂ" JUnit Plug-in Test Name: ITerraME

=% Lua Application

T LuaConfig Path: IC1\TerraME\TerraME\TerraME.ex

.51 SWT Application

OK | Cancel |
Applyy | Hevert

“ »
41 H :J
@ Run Clo |

Figure A.11 — Select the interpreter for the Lua program.

Check the button "Run" in the panel "Common" from the dialog box "Run" to
create a short-cut to your configuration on the Eclipse toolbar (Figure A.12). Then, click
on the buttons "apply" and "run" to execute the project. Figure A.13 shows the short-
cut for your project created in the Eclipse toolbar. The outcome from the model

execution is shown in the Eclipse console.

INPE Report, Version 1.0, December 2006

Create, manage, and run configurations @

Configurations: Mame: | MyConfig

; 4 Edipse Application
.- [E Java Applet
: File] Argumenis] Enviranment =1 Common]

Java Application

Ju Junit ~Save as-

- Jij Uit Plug-in Test & Local file
-1 Lua Application

. MyConfig " shared file: |

i @ SWT Application

~Display in favorites menu - Console Encoding
i % Default (Cp1252)

" Other] -§859-1 -

¥ Launch in backaround

New Delete | Apply |Kegert]

Figure A.12 - Check the button "run" to create a short-cut for your configuration in the
Eclipse toolbar.

& Java - MyModel.lua - Eclipse SDK |’._H'E‘E‘
File Edit Mavigate Search Project Run Window Help
i 2| H-0-%- | EFE- | @4) E | &ava
[% Package Explorer 52 | R Al = 0| 3= outine % ™ ==
Run As b jrint ("Hello World"): An outline is not available.
=-1=% MyProject Q Run...
[¢] MyMadel lua Organize Favorites. ..
Problems | Javadoc Dedaration B console 22 & E™ (I_)—ﬁ ™ E W o
<terminated> MyConfig [Lua Applicati \Program files\TerraME\TerraME. exe MyModel lua
Hella World !
Writable | Insert 1:1

Figure A.13- A short-cut for "MyConfig" has been created in the Eclipse toolbar. The
result from the project execution is shown on the "console" window.

	1Introduction
	2The TerraME Environment
	3The TerraME Modelling Language: Basic Commands
	3.1TerraME as a LUA Extension
	3.2The CellularSpace
	3.3Database management for cell spaces
	3.4The Cell type
	3.5Traversing a cell space
	3.6The Neighbourhood type
	3.7Synchronizing a cell space

	4Examples of physical models in TerraME
	4.1The "Hello World" model
	4.2A simple spatial model
	4.3A 2D spatial model
	4.4A spatial model integrated to a geographic database
	4.5A Simple Hydrological Model

	5Examples of land change models in TerraME
	5.1A spatial diffusive model for land change
	5.2A regression model for land change
	5.3A combined diffusive/regression model
	Figure 30 – Result of land change model based on spatial regression
	Installing the TerraView application

