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1 Introduction20

Lattice data refer to statistical data observed at spatial locations or areas in a21

given geographical region. It is common to assume that observations at sites22

near each other tend to have similar values. The Conditional Autoregressive23

(CAR) and the Simultaneous Autoregresive (SAR) models are widely used24

to analyze these lattice data. The SAR model is preferred in likelihood infer-25

ence, while the CAR model is more common in Bayesian inference as a prior26

distribution for spatially structured random effects.27

Despite their popularity, these models bring uneasy consequences for the im-28

plied correlation structure of the variables. Several authors have pointed out29

that the SAR and CAR models yield non constant variances at each site as30

well as unequal covariances between regions separated by the same number of31

neighbors (Haining, 1990, page 82; Besag and Kooperberg, 1995).32

Wall (2004) extensively studied the covariance structure entailed by these33

models. She found that the implied correlation between a pair of neighboring34

areas is negatively associated with the number of neighbors of each region.35

However, she also showed that this relationship is not simple and much vari-36

ability remains unexplained. For example, considering the three neighboring37

US states Missouri, Arkansas, and Tennessee, she showed that, although Mis-38

souri and Tennessee have the same neighboring structure, their correlation39

with Arkansas differs. She also showed that sites with equal number of neigh-40

bors can have different variances.41

ekrainski@ufmg.br (Elias Teixeira Krainski), gdelpino@mat.puc.cl (Guido del

Piño).
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In addition to these uncomfortable results, Wall (2004) pointed out a series of42

puzzling results from these two spatial models. One of them is that correla-43

tions between areas switch their ranks depending on ρ, a spatial dependence44

parameter. Suppose that a pair (i, j) of sites are more correlated than another45

pair (k, l) when ρ = 0.5. It is not uncommon that when ρ = 0.7, the pair (k, l)46

becomes more correlated than (i, j). One would expect, perhaps naively, that47

the order should be the same, irrespective of the spatial dependence parame-48

ter value. Even more puzzling are the results concerning negative values for ρ.49

She found that when ρ is negative, correlations between the neighboring areas50

are also negative but, as ρ decreases further, some pairs of areas start to be51

positively correlated, even approaching +1 at times.52

Wall (2004) concluded that the implied spatial correlation between the differ-53

ent sites using the SAR and CAR models does not seem to follow an intuitive54

or practical scheme and she called for more research to be carried out to clarify55

these problems. This is the main purpose of this paper. We explain the appar-56

ently counterintuitive or impractical consequences of the model specification57

by using the complete neighborhood graph structure, not only the immediate58

neighborhood. In accounting for the complete neighborhood structure, we see59

that a crucial role is played by the second largest eigenvalue modulus of the60

neighborhood matrix used in the SAR and CAR models. We use a simple61

matrix algebra identity to write the covariance matrices of the SAR and CAR62

models as a matrix power series. This enables us to express the correlation63

between any two pairs of areas i and j as an infinite series with exponential64

decay given by the spatial dependence parameter ρ. Moreover, the k-th term65

coefficient of this series is proportional to a weighted sum of the different paths66

to move from area i to area j in k steps.67
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In Section 2, the CAR and SAR models are defined and we illustrate the68

implied consequences for the covariance structure by means of an example69

with the US continental states. Section 3 reviews the linear algebra definitions70

and results relevant for this paper and Section 4 shows how many of the71

puzzling results can be understood. Conclusions are presented in Section 5.72

2 The SAR and CAR models73

Let a region D be partitioned into n areas {A1, . . . , An} such that D = A1 ∪74

. . .∪An and Ai ∩Aj = for all i 6= j. Let yi be a random variable measured at75

area i and y = (y1, . . . , yn)
t. We denote by y−i the (n− 1)-dimensional vector76

without the i-th coordinate of y. The conditional autoregressive model (CAR)77

is given by a set of n conditional distributions78

yi|y−i ∼ N



µi +
n
∑

j=1

cij(yj − µj), κ
2

i



 (1)79

where cii = 0 and κ2

i > 0 for i = 1, . . . , n. It is not any set of n conditional80

distributions that determine uniquely a joint distribution for the vector y.81

However, a very popular choice in spatial studies for the constants cij and κi82

defines a valid joint model, and we adopt this choice in the rest of this paper.83

The choice of the n × n matrix C = (cij) is related to the degree of spatial84

proximity between areas i and j. Let A = (aij) be an n × n binary neigh-85

borhood matrix such that aij = 1 if, and only if, areas i and j are neighbors86

(denoted by i ∼ j). We let aii = 0. Define W = (wij) such that wij = aij/ai·87

where ai· =
∑

j aij = di, the number of neighboring areas of region i. Finally,88

define C = ρcW and κi = σ2

c/di. Under a restriction on the value of ρc, the89
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CAR model (1) with these options defines a valid joint distribution for the90

vector y given by a multivariate normal distribution:91

y ∼ Nn

(

µ, (I − ρcW )−1K
)

(2)92

where µ = (µ1, . . . , µn)
′, I is the identity matrix and K is the diagonal matrix93

diag(κ1, . . . , κn) which is equal to σ2

c diag(d−1

1 , . . . , d−1

n ). The restriction on ρc94

is necessary to ensure that (I−ρcW )−1K is positive definite and it suffices to95

take ρc such that ρc is between 1/ mini λi and 1/ maxi λi where λi, i = 1, . . . , n,96

are the eigenvalues of W (Haining, 1990, page 82).97

This choice also implies that (1) reduces to98

yi|y−i ∼ N
(

µi + ρc(y − µ)i, σ
2

c/di

)

(3)99

where (y − µ)i =
∑

j wij(yj−µj) is the average of the deviations yj−µj among100

j ∼ i, i.e. among the neighboring areas of i.101

The SAR model is defined by n simultaneous equations102

yi = µi +
n
∑

j=1

sij(yj − µj) + ǫi (4)103

where ǫ = (ǫ1, ..., ǫn)′ ∼ N(0,Λ) with Λ diagonal, E(yi) = µi, and sij are104

known constants with sii = 0, i = 1, ..., n. This model is simultaneous because105

the random variables are simultaneously determined by the n equations in106

4. Provided that the inverse of the matrix In − S exists, the distribution of107

y = (y1, . . . , yn)
′ is108

y ∼ N(µ, (In − S)−1Λ(In − S)−1
′

) , (5)109
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where Sij = sij . A popular choice for S is to take S = ρsW , where ρs ∈110

(−1, 1). Following Wall (2004), we will constrain ρs to the same interval as ρc111

in order to allow for comparisons between the models.112

With these choices for the SAR and CAR model, the correlation matrix entries113

are functions of only W and ρc or ρs. For example, for the CAR model, we114

have115

Cor(i, j) =
σ2

c (I − ρcW )−1

ij d−1

j
√

σ2
c (I − ρcW )−1

ii d−1

i

√

σ2
c (I − ρcW )−1

jj d−1

j

,116

and σ2

c is canceled out.117

2.1 The puzzling results118

We summarize the main puzzling results concerning the correlations implied by119

the SAR and CAR models and described by Wall (2004). She used the United120

States map to illustrate the implications that the CAR and SAR models entail121

for the covariance between pairs of areas. Consider the graph composed by the122

48 contiguous continental states. Two states i and j are connected by an edge123

(meaning that wij > 0) if they share borders. This graph is in Figure 2.1,124

with the underlying US map. The upper right plot in Figure 1 shows the125

correlations Cor(i, j) between pairs of neighboring states by the number of126

neighbors. Every pair (i, j) of neighboring areas contribute two points in this127

plot depending on each area’s number of neighbors, the pair (di, Cor(i, j)) and128

the pair (dj, Cor(i, j)). We can see that, for a given number of neighbors, there129

is a large variation in the correlations.130

The lower row of plots in Figure 2.1 shows how the correlations Cor(i, j) varies131
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with the spatial dependence parameter ρ. Each line represents the correlation132

between two neighboring areas and the horizontal axis corresponds to the133

spatial dependence parameter ρs of the SAR model (left hand side plot), or134

ρc for the CAR model (right hand side plot). Based on the eigenvalues of W135

for the US lattice, a restriction for the spatial parameter space (−1.392, 1).136
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Fig. 1. The graph of USA states by neighboohod, SAR correlations implied by

number o neighbors if ρs = 0.6 and the correlations implied by SAR and CAR

models for all possible ρs and ρc values

Most of the puzzling results appear in these plots. We can see that lines cross137

each other as ρ varies, irrespective of the model adopted. This means that, if138

we increase the spatial correlations between all pairs of areas by increasing ρ,139

states which are less correlated than others can become more correlated after140

varying ρ. For example, when ρc = 0.49, the correlation between Alabama141

and Florida is 0.1993 while the correlation between Alabama and Georgia142
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is 0.1561. However, when ρc = 0.97, the correlation between Alabama and143

Florida is 0.6311, smaller than the correlation between Alabama and Georgia,144

which is equal to 0.6490. This seems odd as it means that the effect of changing145

ρ is not uniquely defined.146

Consider the behavior of Cor(i, j) when ρ approaches its lower bound -1.392.147

the pairwise correlations approach either −1 or +1. The latter limit value is148

counter-intuitive: some pairs tend to be perfectly positively correlated when149

we expect they to be the opposite of their neighboring values according to the150

SAR or CAR models.151

Some results are reassuring. The correlations increase monotonically with ρ152

when the spatial dependence parameter is positive. However, the range of153

the correlations depends on the value of ρ. For instance, when ρs = 0.1,154

correlations between neighboring states vary between 0.026 and 0.115, while155

this variation lies between 0.241 and 0.642 when ρs = 0.6.156

3 Some preliminary definitions and results157

To explain the puzzling consequences, we use linear algebra and graph theory158

results.159

3.1 Random graphs and the matrix W160

The W matrix can be seen as the transition matrix of a Markov chain defined161

on a graph. Assume that n nodes or vertices, represented by the areas Ai, are162

connected by undirected edges such that there is an edge between areas i and163
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j if wij 6= 0. Define a discrete-time and finite Markov chain with transition164

matrix given by W . That is, if a particle is in one vertex i at time t, it moves165

to a different vertex in the next moment choosing among the neighbors of Ai166

with equal probability. These type of Markov models are called random walks167

on graphs (Brémaud, 1999, page 214), or random graph, for short. W k is the168

transition matrix for the chain movements in k steps.169

The random walk on the neighborhood graph converges to a unique stationary170

distribution if the Markov chain defined by W is ergodic and aperiodic. For171

this, the graph must be connected, i.e., from each node there exists a path of172

edges connecting successive nodes until any other arbitrarily chosen node is173

reached. If W is the normalized adjacency matrix of an undirected graph G,174

then the stationary distribution of the Markov chain defined by W is given175

by π = (π1, ..., πn) where πi = di/D, where di is the number of neighbooring176

areas of i and D =
∑

i di (see Brémaud, 1999, page 214).177

This implies that the power W k converge to a matrix composed by identi-178

cal rows, all of them equal to the stationary distribution vector π. That is,179

W k
ij → dj/D, as k → ∞. The convergence to this stationary distribution is180

geometric, with relative speed proportional to the second-largest eigenvalue181

modulus. This result is known as the Perron-Fröbenius theorem (Brémaud,182

1999, page 157) and it is important for our development. It can be shown183

that the eigenvalue of W with the largest modulus has multiplicity 1 and it184

is λ = 1. Let λ2, . . ., λn be the other eigenvalues of W ordered in a such a185

way that186

λ1 = 1 ≥ |λ2| > . . . ≥ |λn| .187
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Let m2 be the multiplicity of λ2 and 1 = (1, . . . , 1)t. Then, the Perron-188

Fröbenius theorem proves that189

W k = 1 πt + O(km2−1|λ2|
k) ,190

where k is a positive constant. In particular, if |λ2| > |λ3| then m2 = 1 and191

the convergence speed decays exponentially with the second largest eigenvalue192

modulus |λ2|.193

3.2 A matrix identity194

There is a matrix identity which is fundamental to understanding the behavior195

of the correlations implied by the models and described in Section 2. If M196

is a square matrix such that each entry of the matrix M k goes to zero as k197

increases, then the inverse (I − M)−1 exists and is given by198

(I − M)−1 = I + M + M 2 + M 3 + . . . (6)199

(see Iosifescu, 1980, page 45). Take M = ρW where |ρ| < 1. Since 0 ≤ W k
ij ≤200

1 for all i, j and for all integer k, we can write201

(I − ρW )−1 = I + ρW + ρ2W 2 + ρ3W 3 + . . . (7)202

3.3 The powers of the W matrix203

If [W k]ij > 0, then the probability of going from i to j in k steps in the204

random graph is positive. This means that there exists at least one sequence205

of k edges connecting nodes such that the initial and final nodes are i and j,206
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respectively. Let us call such a path of a k-th order path between areas i and207

j. In fact, the value of [W k]ij is a weighted sum of all the k-th order paths208

between i and j. For example, [W 2]ij is given by209

[W 2]ij =
n
∑

k=1

WikWkj =
n
∑

k=1

aik

di

akj

dk

=
1

di

n
∑

k=1

aikakj

dk

. (8)210

The binary product aikakj is equal to 1 only if k connects both i and j.211

Therefore, [W 2]ij is proportional to a weighted sum of all second-order paths212

i → k → j. Each path contributes a fraction inversely proportional to the213

number dk of neighbors the intervening area k has. The more connected k214

is, the smaller the contribution of the path i → k → j to [W 2]ij . Note that215

[W 2]ii > 0 because there is at least one path of the type i → k → i since each216

area has at least one neighbor.217

Similarly, [W 3]ij is given by218

[W 3]ij =
n
∑

l=1

[W 2]ilwlj =
1

di

n
∑

l=1

n
∑

k=1

aikaklalj

dkdl

. (9)219

Each path i → k → l → j is inversely weighted by how dense is the neigh-220

borhood graph at k and l. Note that paths such as i → j → i → j are also221

counted.222

4 Revisiting the puzzling results223

Putting together the results of Section 3, for |ρ| < 1, we can write224

[(I − ρW )−1]ij = [I]ij + ρ[W ]ij + ρ2[W 2]ij + ρ3[W 3]ij + . . . (10)225

As long as |ρ| < 1, the correlation between i226
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Since the k-th coefficient [W k]ij can be interpreted as a probability, it lies227

between 0 and 1. Furthermore, [W k]ij approaches the limit dj/D for all i228

and the speed of this convergence, for all i and j, is determined by the second229

largest eigenvalue modulus of W . This means that, with a good approximation230

and for some value k, we can write231

[(I − ρW )−1]ij ≈ [I]ij + ρ[W ]ij + . . . + ρk−1[W k−1]ij +
djρ

k

D(1 − ρ)
(11)

≈ [I]ij + ρ[W ]ij + . . . + ρk−1[W k−1]ij (12)

With these facts, the results are less puzzling and easier to understand. Ba-232

sically, when we naively try to understand the covariance structure focusing233

only on the first-order neighborhood structure, we are doomed from the start.234

For instance, if the third degree approximation in (12) suffices, we have the235

CAR model covariance between areas i and j, ieqj, given approximately by236

κ2

dj

(

ρaij

di

+
ρ2

di

n
∑

k=1

aikakj

dk

+
ρ3

di

n
∑

l=1

n
∑

k=1

aikaklalj

dldk

)

237

Ignoring the neighborhood structure geographically more distant than the first238

order will produce a crude approximation to the true correlation coefficient.239

Giving due consideration to the longer paths from i to j, though with ever240

decreasing weight, we find the results described by Wall (2004) to be much241

less puzzling, as we discuss next.242

4.1 The CAR model with ρc > 0243

First, let us consider the CAR model and ρc > 0. Then, (10) shows that the244

correlation must increase monotonically with ρc, since all the coefficients in245
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that series expansion are nonnegative. This is one of the empirical results from246

Wall (2004). Although it is what one expects intuitively, now we understand247

the underlying reason for this monotone increase of Cor(i, j).248

However, correlations of different pairs can increase at different rates. This is249

because the series expansion coefficients in (10) are pair-specific. In fact, the250

derivative of [(I − ρW )−1]ij is equal to251

∂

∂ρ
[(I − ρW )−1]ij = [W ]ij + 2ρ[W 2]ij + 3ρ2 [W 3]ij + . . . (13)252

This implies that, for ρ ∈ (0, 1), we have an increasing derivative with ρ. If ρ253

is not too close to 1, the rate of increase of this derivative depends mostly on254

the second-order neighborhood [W 2]ij .255

Different pairs can exchange their relative positions as ρc > 0 increases and256

it is clear now why and when this happens. The derivative on (13) depends257

of the specific pair i, j under consideration. For example, assuming that the258

second degree polynomial approximation in (12) is good enough, then259

∂

∂ρ
[(I − ρW )−1]ij ≈ [W ]ij + 2ρ[W 2]ij (14)260

Therefore, the larger ρc, the greater the positive contribution of the second-261

order neighborhoods. Hence, when ρc is small, a pair (i, j) can have a small262

correlation that may increases faster than the correlation in other areas simply263

because its second order coefficient [W 2]ij is relatively large.264

This is the explanation for the apparently strange behavior of the switching265

ranks between the correlations of Alabama and Florida and Alabama and266

Georgia. We use Table 1 to illustrate our arguments focusing on the CAR267
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Table 1

Values of the entries of W k, ρkW k, and the cumulative sum
∑k

j=0
ρjW j for the

pairs of neighboring states (Alabama, Florida) and (Alabama, Florida). We consider

the values ρ = 0.97 and ρ = 0.49.

k 1 2 3 4 5 10 30 50 100

Alabama and Florida, ρc = 0.97

W k 0.2500 0.0500 0.0984 0.0498 0.0588 0.0317 0.0127 0.0100 0.0094

ρkW k 0.2425 0.0470 0.0898 0.0441 0.0505 0.0233 0.0051 0.0022 0.0004

CumSum 0.2425 0.2895 0.3794 0.4235 0.4740 0.6246 0.8345 0.8997 0.9526

Alabama and Georgia, ρc = 0.97

W k 0.2500 0.1562 0.1516 0.1333 0.1179 0.0754 0.0312 0.0249 0.0234

ρkW k 0.2425 0.1470 0.1383 0.1180 0.1012 0.0556 0.0125 0.0054 0.0011

CumSum 0.2425 0.3895 0.5278 0.6458 0.7470 1.1026 1.6092 1.7711 1.9030

Alabama and Florida, ρc = 0.49

ρkW k 0.1225 0.0120 0.0116 0.0029 0.0017 0.0000 0.0000 0.0000 0.0000

CumSum 0.1225 0.1345 0.1461 0.1490 0.1506 0.1517 0.1517 0.1517 0.1517

Alabama and Georgia, ρc = 0.49

ρkW k 0.1225 0.0375 0.0178 0.0077 0.0033 0.0001 0.0000 0.0000 0.0000

CumSum 0.1225 0.1600 0.1778 0.1855 0.1889 0.1915 0.1915 0.1915 0.1915

model with ρc = 0.97 and ρc = 0.49. For Alabama and Florida,268

[(I − ρW )−1]Al, Fl ≈ 0.25ρ + 0.05ρ2 + 0.10ρ3 + 0.05ρ4 + . . .269

14



while, for Alabama and Georgia, we have270

[(I − ρW )−1]Al, Ge ≈ 0.25ρ + 0.16ρ2 + 0.15ρ3 + 0.13ρ4 + . . .271

The coefficients of this expansion has a slower decline for the more fully con-272

nected pair (Alabama, Georgia) than for the pair (Alabama, Florida). When273

ρ = 0.49, this difference is not relevant because the diminishing ρk quickly274

shrinks the term ρk[W k]ij towards zero for both pairs. The consequence is275

that the first few terms, with small k, dominate the series. Considering only276

the first order approximation with k, we are within 64% and 81% of their277

limiting values, equal to 0.1915 for the pair (Alabama, Georgia), and equal278

to 0.1517 for the pair (Alabama, Florida), respectively. Using a third degree279

approximation with k = 3, we get very close to these limits, within 93% and280

96%, respectively.281

This picture changes substantially when ρ = 0.97. Now, even relatively large282

k-th order neighborhoods contribute a fair amount to the series sum. As a283

consequence, the convergence of [(I − ρW )−1] is slow. With k = 1, we are284

within only 13% and 25% from their limiting values, equal to 1.9030 for the285

pair (Alabama, Georgia), and equal to 0.9526 for the pair (Alabama, Florida),286

respectively. Increasing to k = 10 we are still away from the limiting values,287

58% from (Alabama, Georgia), and 66% from (Alabama, Florida). This means288

that more geographically distant neighborhood structures, reflected in the k289

steps paths from i to j in the W k entries, have a non-negligible impact on290

the series’ limits. Since these paths are different for the two pairs of areas, the291

end result is that an initial ordering of correlations when ρ = 0.49 is switched292

as ρ increases to 0.97.293
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Let us turn our attention to the relationship between variances Var(yi) and the294

number di of first order neighbors. Wall (2004) noticed that there is a typical295

negative relationship between these two quantities but that there is also vari-296

ation of Var(yi) among areas with equal di. We use again the approximation297

in (12) to clarify this in the case of the CAR model.298

Suppose that the W k converge fast enough such that299

Var(yi) =
σ2

c

di

[(I − ρW )−1]ii

≈
σ2

c

di

(

1 + ρ[W ]ii + ρ2[W 2]ii +
diρ

3

D(1 − ρ)

)

=
σ2

c

di

(

1 + ρ2[W 2]ii
)

+
σ2

cρ
3

D(1 − ρ)

≈
σ2

c

di

(

1 +
ρ2

di

∑

k

aikaki

dk

)

where, in the last approximation, we ignored the last term and used (12).300

Therefore, the declining value of Var(yi) with di is obvious but we also need301

to recognize the effect of the second (and higher) neighborhood order. The302

sum
∑

k(aikaki)/dk depends on its number of terms. That is, it depends on the303

number di of first order neighbors k ∼ i. It also depends on the connectedness304

degree of these neighbors through their dk values.305

To illustrate with an extreme case, suppose that area i has a single neighbor,306

area k. Then307

Var(yi) ≈ σc

(

1 +
ρ2

dk

)

308

Two areas in this same single-neighbor situation have different variances if309

their single neighbors have different number of neighbors. The more connected310

is the single neighbor k, the smaller the variance of i.311
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4.2 The CAR model with ρc < 0312

Concerning the negative pairwise correlations, again the spatial dependence313

parameter ρc and the higher order neighboring areas are crucial to understand314

their behavior. For −1 < ρc < 0, the terms in the series (10) alternate signs and315

this explains the counter intuitive behavior of some pairs of areas. If ρ is close316

to its lower bound −1, the decay ρk is slow and more distant neighborhood317

patterns impact on the correlation value with alternating signs. The first term318

ρ[W ]i,j in the covariance expansion (10) is obviously negative. However, since319

[W k]i,j is not a monotone decreasing function of k, it is possible that the320

sum of the first two brings the covariance closer to zero or even positive. This321

happens if an increase in [W 2]i,j with respect to [W ]i,j more than compensates322

the decrease from |ρ| to ρ2. This argument is valid with higher order of k.323

As an example, consider Vermont and Massachussetts. When ρc = −0.99999,324

the correlation between these two areas is equal to −0.1051. The convergence325

of [(I − ρW )−1]ij for this pair is very slow. Table 2 shows the values W k,326

ρkW k, and the cumulative sum
∑k

j=0
ρjW j for Vermont and Massachusetts.327

We can see that the cumulative sum alternates widely. The difference between328

k = 100 and k = 101 for the cumulative sum is in the second devimal place,329

a substantial value for such a large order k.330

All pairs of neighboring areas have negative correlation in the CAR model331

when −1 < ρc < 0. However, in the SAR model with ρs = −0.99999, Vermont332

and Massachusetts has correlation equal to 0.0293. We discuss the SAR model333

in more detail in section 4.3 but it is appropriate to advance some its results334

here. Similarly to the CAR model, using the power expansion of [(I−ρW )−1]335
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Table 2

Values of the entries of W k, ρkW k, and the cumulative sum
∑k

j=0
ρjW j for the

pair Vermont and Massachusetts. We consider ρ = −0.99999.

k 1 2 3 4 5 10 100 101

ρkW k -0.3300 0.1778 -0.1948 0.2061 -0.1729 0.1590 0.0315 -0.0313

CumSum -0.3300 -0.1556 -0.3504 -0.1442 -0.3172 -0.1151 -0.1671 -0.1984
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Fig. 2. Successively approximating the correlation between Vermont and Mas-

sachusetts as we increase the number of terms in the finite sums of (15), We use

ρs = −0.99999.

for the SAR covariance in (5), we can express Cor(i, j) as a power series in ρs.336

Figure 2 shows the approximation as successively larger finite sums are used337

to approximate the eventually positive correlation. Considering only the first338

neighborhood orders, the approximation is negative.339

The behavior for ρ ≤ −1 is less simple to explain with our tools. The series340

expansion (10) is no longer valid and our interpretations can not be put into341

use. When an extremely negative spatial parameter is used in the US states342

graph, the pairwise correlations approach either to −1 or to +1. In Figure 3343
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we draw the edges according to the limiting behavior of the pairwise corre-344

lation as ρ approaches its lower bound −1.3923 = mini{λi}
−1. A virtually345

identical figure is obtained for the SAR model. Solid lines are used for those346

pairs in which the correlation approach −1 while the dashed lines represent347

the pairs with limiting correlation approaching +1. It is not clear what the348

pattern means but we present a conjecture. It seems as if areas which act349

as the center of star shaped local neighborhoods have their connecting edges350

mostly positive. See, for example, Idaho, Colorado, and South Dakota. The351

edges composing the outer rings of these star-shaped local neighborhoods have352

negative correlations.353

Fig. 3. Edges of US states neighborhod graph drawn according to the pairwise corre-

lation when ρc approaches its lower bound −1.3923. Solid line: positive correlation,

+1; dashed line: negative correlation, −1.

To consider an intuitive explanatio for this conjecture, imagine that we are354

going to assign the value +1 to approximately one half of the areas and −1355

to to the remaining areas. In this way we keep the global mean close to zero.356

Let B the number of neighboring edges connecting areas with different values.357

If we want to maximize B, it seems that assigning +1 to the center of star358

shaped areas and −1 to the areas in the outer rings may be near optimal. We359
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are investigating the truth of our conjecture at the moment.360

4.3 The SAR model361

The arguments for the SAR model are very similar to those presented for the362

CAR model but the formulas are more convoluted. Using the power series363

expansion (10) in the SAR covariance (5), we can write364

Σs =(I − ρW )−1Λ((I − ρW )−1)
′

=(I + ρW + ρ2W 2 + ρ3W 3 + ...)Λ(I + ρW + ρ2W 2 + ρ3W 3 + ...)
′

=
∞
∑

n=0

[

ρn
n
∑

k=0

W kΛ(W n−k)
′

]

which has elements given by365

(Σs)ij =
σs

dj

∞
∑

n=0

[

ρn
n
∑

k=0

(W k)ij(W
n−k)ji

]

. (15)366

If the third degree aproximation for (I − ρW )−1 suffices then367

(Σs)ij =
∑n

k=1
(I − ρW + ρ2W + ρ3W 3)ik

σ2

dk

(I − ρW + ρ2W + ρ3W 3)jk
(16)368

where the element (I − ρW + ρ2W 2 + ρ3W 3)ik is equal to369

(I{i=k} − ρ
aik

di
+

ρ2

di

∑

p=1

n
aipapk

dp

+
ρ3

di

n
∑

p=1

n
∑

q=1

aipapqaqk

dpdq

)ik (17)370

The main difference between SAR and CAR is that a third degree approxi-371

mation for (I − ρW )−1 imply in up to a sixth degree polynomial in ρs for372

each entry of the covariance matrix, the coefficients involving elements of W .373

Therefore, we get the same type of polynomial approximation as in the CAR374

model and our qualitative conclusions follow unchanged for the SAR model.375
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Incidentally, note that this higher approximating polynomial degree in the376

SAR model as compared to the CAR model explains why, in Figure 1, the377

first order neighbor correlatins increase at a slower rate as a function of posi-378

tive ρc in the CAR model than for positive ρs in the SAR model. For a given379

approximating polynomial in ρ for (I − ρW )−1, the implied SAR correlation380

polynomial has more positive terms than the corresponding CAR polynomial,381

as can be seen in (), for example.382

4.4 The role of |λ2|383

The second largest eigenvalue modulus |λ2| is in the interval [0, 1) and it is384

responsible for the speed at which [W k]ij converges to its limiting value dj .385

That is, the smaller |λ2|, the smaller the degree k required in the approxima-386

tion (12). Regular graphs are those with di constant. For a highly irregular387

neighborhood graph it is difficult to obtain exact results analytically. However,388

on regular graphs, these results are available and they highlight the interplay389

between the neighborhood structure and the approximation speed (See Chung,390

1997, Chapter 1). Basically, the more connected the graph is, the larger the391

value of |λ2|. Hence, |λ2| is a measure of overall connectedness of a graph.392

In order to illustrate these points, we computed |λ2| for some regular graphs.393

Consider a ring graph with nodes {(u, u + 1) : 1 ≤ u < n2} ∪ {(1, n2)}.394

Then, |λ2| = cos(2π/n2) ≈ 1 if n is large (Chung, 1997, page 6). This de-395

creases substantially when we pass to a grid graph with n2 vertices sym-396

metrically wrapped into a torus. In this case, each vertex has four neigh-397

boring vertices and |λ2| = (1 + cos(2π/n))/2, the midpoint between 1 and398

cos(2π/n) < cos(2π/n2) for n ≥ 2. Finally, consider the most dense graph399
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possible with n2 vertices, the complete graph in which every area is a neigh-400

bor of every other area. Then, |λ2| = 1/(n2 − 1) ≈ 0, if n2 is large.401

Admittedly, these graphs are highly artificial and do not represent the typical402

maps found in practice. To have a better idea of the effect of the average403

density of connections on |λ2|, and hence on the speed of the convergence404

[W k]ij → dj/D, we successively pruned a real map while keeping the entire405

graph connected. The objective is to show how the value of |λ2| tends towards406

1 as we prune the graph.407

The usual US states map is not the best choice for this demonstration. The408

reason is that |λ2| = 0.9714 for this graph, a large initial value. This large409

value indicates that there are parts of the map (such as the NE region) that410

are hard to reach in a random walk, implying in long paths or a nearly discon-411

nected graph. Even more regularly connected graphs have large eigenvalues.412

Therefore, in addition to pruning the usual adjacency neighborhood graph, we413

also added edges between second-order neighbors. That is, we increased the414

density of connections in the graph by adding edges between areas that are415

separated from each other by at most a third area.416

We randomly selected an edge to be deleted while this was possible until only417

n − 1 edges remained (that is, until we reached a spanning tree). We also418

randomly created edges between second-order neighbors. To keep the balance419

on the two directions, we added edges until we reached the same number420

needed to generate the most pruned graph. We repeated this procedure one421

hundred times independently.422

Figure 4.4 shows the graph of the second largest eigenvalue modulus |λ2(j)|423

where j is either the number of deleted edges from the original map (if j < 0)424

22



USA

Wyoming

Iowa

Minas Gerais

−60 −40 −20 0 20 40 60

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

Five realizations

Number of edges

λ 
2

−30 −20 −10 0 10 20 30

0.
80

0.
85

0.
90

0.
95

Five realizations

Number of edges

λ 
2

−200 −100 0 100 200

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Five realizations

Number of edges

λ 
2

−100 −50 0 50 100

0.
92

0.
94

0.
96

0.
98

1.
00

Five realizations

Number of edges

λ 
2

−60 −40 −20 0 20 40 60

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

Envelope

Number of edges

λ 
2

−30 −20 −10 0 10 20 30

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Envelope

Number of edges

λ 
2

−200 −100 0 100 200

0.
93

0.
95

0.
97

0.
99

Envelope

Number of edges

λ 
2

−100 −50 0 50 100

0.
92

0.
94

0.
96

0.
98

1.
00

Envelope

Number of edges

λ 
2

Fig. 4. Sucessively adding or pruning the adjacency neighborhood graph of four

graphs. The geographical regions are the US states map, the the counties of

Wyoming and Iowa, and the municipalities of Minas Gerais, a Brazilian state. The

second column of plots shows five realizations of the of the addition-pruning process

in each graph. The third column of plots shows 95% confidence envelopes based on

the simulations in dashed lines, as well as the mean |λ2(j)| value in solid line.

or the number of added edges (if j > 0). We used four geographical regions,425

shown in the first column of plots: the US states map, the counties of Wyoming426

and Iowa, and the municipalities of Minas Gerais, a Brazilian state with the427

same extension as France. Their |λ2(0)| values are 0.9714, 0.8850, 0.9717, and428
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0.9561, respectively. The second column of plots shows five realizations of429

the addition-pruning process in each graph. Each line is the value of |λ2(j)|430

as j varies. The third column of plots shows in dashed lines 95% confidence431

envelopes based on the 100 simulations, as well as the mean |λ2(j)| value as a432

solid line.433

Specific paths within the confidence envelope are not necessarily monotone.434

That is, the deletion (or addition) of a specific edge can decrease (or increase)435

the eigenvalue of the resulting W matrix. However, the average behavior is436

that the denser the connections, the smaller the eigenvalue and hence, faster437

the convergence. In terms of the puzzling results discussed in Wall(2004), this438

means that the denser the graph, the less likely the change of ranks between439

different pairs of areas.440

5 Conclusions441

We found a systematic structure to the SAR and CAR covariance model asso-442

ciated with the spatial structure of the data. This structure is not determined443

only by the immediate neighborhood of each area. Rather, in a very precise444

way, we show that the spatial covariance depends on the spatial connections445

of all neighborhood orders. How strong is the impact of more distant neigh-446

boring areas is determined by the second largest eigenvalue modulus of the447

neighborhood matrix W and the value of the spatial dependence parameter448

ρ.449
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