Essa é uma revisão anterior do documento!


Resumo

A Inferência Bayesiana possui uma série de aplicações nas áreas financeira e atuarial aonde métodos computacionalmente intensivos são utilizados no desenvolvimento de modelos para constituição de provisões matemáticas. Neste trabalho, vários modelos Bayesianos serão propostos e comparados em termos de sua capacidade preditiva. Como será visto, fazer inferência para os parâmetros desses modelos não é trivial e por isso, serão utilizados métodos de Monte Carlo via Cadeias de Markov (MCMC) para estimação e comparação de modelos. Será utilizado o software WinBUGS para simulação das cadeias de Markov e por fim, será feita a análise dos resultados, produzindo um comparativo entre as técnicas Bayesianas e o método atualmente vigente, a fim de encontrar o melhor preditor para o cálculo da IBNR (Provisão para Eventos Ocorridos mas Não Avisados).

Participantes

  1. Leonardo Melo (UFPR)

To Do list

  1. Derivar as condicionais completas dos modelos com misturas

Bibliografia


QR Code
QR Code projetos:ehlers:bayesgrad (generated for current page)