Diferenças

Aqui você vê as diferenças entre duas revisões dessa página.

Link para esta página de comparações

Ambos lados da revisão anteriorRevisão anterior
Próxima revisão
Revisão anterior
disciplinas:lce5715-2014 [2014/10/10 16:05] clobosdisciplinas:lce5715-2014 [2014/11/14 22:05] (atual) clobos
Linha 79: Linha 79:
   - (3 de Outubro) Programação do modelo AR(1), usando a distribuição normal univariada considerando todas as observações (a primeria v.a. possui normal com outros parâmetros), sem a primeira observação (expressão fechada para o EMV de rho). Finalmente usamos a distribuição normal multivariada para ajustar o parâmetro do modelo AR(1). Comparar os resultados anteriores com as funções arima e ar do R.   - (3 de Outubro) Programação do modelo AR(1), usando a distribuição normal univariada considerando todas as observações (a primeria v.a. possui normal com outros parâmetros), sem a primeira observação (expressão fechada para o EMV de rho). Finalmente usamos a distribuição normal multivariada para ajustar o parâmetro do modelo AR(1). Comparar os resultados anteriores com as funções arima e ar do R.
   - (10 de Outubro) Modelos de regressão com efeitos aleatórios. Conceitos gerais (Função de Verossimilhanca Marginal). Alguns modelos particulares Modelo Poisson com intercepto aleatório e Modelo beta com efeitos aleatórios. Integração numérica (Laplace, Quadatura Gaussiana, Monte Carlo).   - (10 de Outubro) Modelos de regressão com efeitos aleatórios. Conceitos gerais (Função de Verossimilhanca Marginal). Alguns modelos particulares Modelo Poisson com intercepto aleatório e Modelo beta com efeitos aleatórios. Integração numérica (Laplace, Quadatura Gaussiana, Monte Carlo).
 +  - (17 de Outubro) Exercícios sobre o comando integrate() do R com a distribuição Exponencial, Normal e Poisson. Cálculo de integrais conhecidas, probabilidades acumuladas. Comparamos as funções do R com o comando integrate(). Foram estudadas algumas ideias de como construir o logaritmo da função de verossimilhança marginal para o modelo normal com efeito aleatório normal e o modelo Poisson com efeito aleatório normal, tudo isso usando o comando integrate do R.
 +  - (24 de Outubro) Exercícios sobre Quadratura de Gauss Hermite usando as funções ghq (library(glmmML)) e gauss.quad (library(statmod)) do R. Cálculo de integrais conhecidas. Comparamos a Quadratura de Gauss Hermite com o comando integrate() do R. Estimação de parâmetros para o logaritmo da função de verossimilhança marginal para o modelo normal com intercepto aleatório e o modelo Poisson com intercepto aleatório.  
 +  - (31 de Outubro) Estudo sobre as distribuições Birnbaum-Saunders, Gumbel, Slash, Pareto e Gaussiana Inversa.
 +  - (7 de Novembro) Apresentação de seminários.
 +  - (14 de Novembro) Estimação de parâmetros para o logaritmo da função de verossimilhança marginal para o modelo normal com intercepto aleatório e o modelo Poisson com intercepto aleatório usando a aproximação de Laplace.
 +  - (21 de Novembro) Não haverá aula. 
 +  - (28 de Novembro) Curso Geert (Modelos Mistos).
 +  - (5 de Dezembro) Seminários.
    
  

QR Code
QR Code disciplinas:lce5715-2014 (generated for current page)