Diferenças
Aqui você vê as diferenças entre duas revisões dessa página.
Ambos lados da revisão anteriorRevisão anteriorPróxima revisão | Revisão anterior | ||
disciplinas:ce097-2015-01:historico2015 [2015/04/14 10:45] – paulojus | disciplinas:ce097-2015-01:historico2015 [2015/05/06 17:00] (atual) – paulojus | ||
---|---|---|---|
Linha 16: | Linha 16: | ||
| 06/04 |(Vanessa e Bruno) cont. | | | | 06/04 |(Vanessa e Bruno) cont. | | | ||
| 08/04 |(Vanessa e Bruno) cont. | | | | 08/04 |(Vanessa e Bruno) cont. | | | ||
- | | 13/04 |(PJ) Idéias básicas sobre modelagem e predição geoestatística (model linear/Gaussinano) | [[# | + | | 13/04 |(PJ) Idéias básicas sobre modelagem e predição geoestatística (modelo |
+ | | 15/04 |Idéias básicas sobre modelagem e predição geoestatística (modelo linear/ | ||
+ | | 20/04 |Discussão e scripts de análise com modelagem e predição geoestatística (modelo linear/ | ||
+ | | 22/04 |Discussão e scripts de análise com modelagem e predição geoestatística (modelo linear/ | ||
+ | | 27/04 |Discussão e scripts de análise com modelagem e predição geoestatística (modelo linear/ | ||
+ | | 04/05 |Análise Bayesiana de modelos geoestatísticos | ||
+ | |||
Linha 23: | Linha 30: | ||
<code R> | <code R> | ||
require(geoR) | require(geoR) | ||
+ | ## conjunto da dados "bem comportado" | ||
data(s100) | data(s100) | ||
plot(s100) | plot(s100) | ||
plot(s100, low=T) | plot(s100, low=T) | ||
+ | ## outros dados com comportamentos diferentes | ||
plot(Ksat) | plot(Ksat) | ||
plot(ca20) | plot(ca20) | ||
plot(parana) | plot(parana) | ||
+ | ## | ||
plot(s100, low=T) | plot(s100, low=T) | ||
+ | points(s100) | ||
+ | ## estimação dos parâmetros por máxima verossimilhança | ||
ml <- likfit(s100, | ml <- likfit(s100, | ||
ml | ml | ||
- | g <- expand.grid(seq(0,1, l=11), seq(0,1, l=11)) | + | ## definindo uma malha de pontos para predição espacial |
- | points(s100) | + | ## uma malha " |
- | points(g) | + | |
- | points(g, col=2, pch=19) | + | |
- | g <- expand.grid(seq(0, | + | |
- | points(g, col=2, pch=19) | + | |
g1 <- expand.grid(seq(0, | g1 <- expand.grid(seq(0, | ||
+ | points(s100) | ||
+ | points(g1, col=2, pch=19, cex=0.3) | ||
+ | ## uma malha " | ||
g2 <- expand.grid(seq(0, | g2 <- expand.grid(seq(0, | ||
- | ml | + | points(s100) |
- | kr1 <- krige.conv(s100, | + | points(g, col=2, pch=19, cex=0.3) |
+ | ## predição na malha grossa: | ||
kr1 <- krige.conv(s100, | kr1 <- krige.conv(s100, | ||
- | image(g1) | ||
image(kr1) | image(kr1) | ||
points(s100, | points(s100, | ||
+ | ## predição na malha " | ||
kr2 <- krige.conv(s100, | kr2 <- krige.conv(s100, | ||
image(kr2) | image(kr2) | ||
+ | ## pode-se usar outras palhetes de cores | ||
image(kr2, col=gray(seq(1, | image(kr2, col=gray(seq(1, | ||
image(kr2, col=gray(seq(1, | image(kr2, col=gray(seq(1, | ||
Linha 55: | Linha 68: | ||
image(kr2, col=rev(gray(seq(0, | image(kr2, col=rev(gray(seq(0, | ||
image(kr2, col=terrain.colors(21)) | image(kr2, col=terrain.colors(21)) | ||
- | image(kr2, col=terrain.colors(21), | + | ## mapa de erros padrão de predição |
image(kr2, col=terrain.colors(21), | image(kr2, col=terrain.colors(21), | ||
points(s100, | points(s100, | ||
</ | </ | ||
+ | === 15/04 === | ||
+ | - No exemplo da aula passada inspecione os objetos retornados pelas funções e em especial o retornado por krige.conv(). Para este último o resultado é uma lista na qual os dois primeiros elementos são e média e variãncia das distribuições condicionais (preditivas). Considere antão a obtenção dos seguintes tópicos adicionais: | ||
+ | - Obtenha um mapa de divida dos valores preditos nos intervalos [-Inf a -1,5), [-1,5 a 0], [0, a 1,5] e [1,5 a Inf]. | ||
+ | - Obtenha um mapa de probabilidades de P[Y > 1], P[Y > 1.5], P[Y > 2]. | ||
+ | - Obtenha um mapa do 1o quartil, um do 3o quantil e dos percentis 10 e 90. | ||
+ | - Como voce faria para obter a predição da proporção da área acima de um determinado limiar (por exemplo 1,2). | ||
+ | - Explore um segundo exemplo de análises | ||
+ | - {{: | ||
+ | - {{: | ||
+ | - Mais um exemplo:< | ||
+ | class(Ksat) | ||
+ | names(Ksat) | ||
+ | summary(Ksat) | ||
+ | plot(Ksat) | ||
+ | plot(Ksat, lam=0) | ||
+ | |||
+ | par(mfrow=c(1, | ||
+ | K.v <- variog(Ksat, | ||
+ | plot(K.v) | ||
+ | |||
+ | var(log(Ksat$dat)) | ||
+ | |||
+ | K.eye <- eyefit(K.v) | ||
+ | K.eye | ||
+ | |||
+ | gr <- expand.grid(seq(0, | ||
+ | kr <- krige.conv(Ksat, | ||
+ | image(kr, col=gray(seq(1, | ||
+ | image(kr, col=terrain.colors(16)) | ||
+ | </ | ||
+ | Como ficariam perguntas semelhantes às feitas para o 1o exemplo neste último caso? | ||
+ | Por exemplo: mapa da P[Y > 1] , mapa de quantis etc | ||
+ | |||
+ | === 27/04 === | ||
+ | - Escolha de modelos | ||
+ | - {{: | ||
+ | - {{: | ||
+ | - {{: | ||
/* Análises espaciais de propriedades de 1a e 2a ordem - suavização e padrões de dependência espacial. * | /* Análises espaciais de propriedades de 1a e 2a ordem - suavização e padrões de dependência espacial. * | ||
Linha 65: | Linha 116: | ||
/* | | /* | | ||
+ | === 04/05 === | ||
+ | - Exemplo com dados de salinidade | ||
+ | - {{: | ||
+ | - {{: | ||
+ | - Efetue análises Bayesiana de algum outro conjunto de dados (visto no curso ou outro) |