Essa é uma revisão anterior do documento!


CE-003 Turma O - Primeiro semestre de 2011

No quadro abaixo será anotado o conteúdo dado em cada aula do curso.
São indicados os Capítulos e Sessões correspondentes nas referências bibliográficas, bem como os <fc #FF0000>exercícios sugeridos</fc>.

Veja ainda depos da tabela as Atividades Complementares.

Referências


Conteúdo das Aulas

B & M M & L B, R & B Online
Data Conteúdo Leitura Exercícios Leitura Exercícios Leitura Exercícios Tópico
28/02 Informações sobre o curso. Introdução e organização à disciplina. Chances e probabilidades. Alguns problemas e paradoxos (o problema do aniversário, o teste de diagnóstico, o problema das sequências). Demonstração computacional. Cap 1 Cap 1 Cap 1
02/03 Probabilidades: definições de probabilidades (clássica, frequentista, subjetiva) conceitos: espaço de probabilidades, espaço amostral, eventos. Espaços discretos e contínuos. <m>sigma</m>-álgebra. Definição axiomática de probabilidades. Propriedades. Probabilidade de união, intercecção e condicional. Exemplos. Cap 5, Sec 5.1 e 5.2 Cap 5: 1 a 14 Cap 2, Sec 2.1 Cap 2: Sec 2.1: 1 a 5, Sec 2.3: 1 a 7 Cap 4, Sec 4.1 e 4.2 Cap 4: 1 a 7 Online Statistics (Itens A, B, C, D, E)
14/03 Probabilidades (cont): probabilidades marginais, conjuntas e condicionais. Probabilidade total e Teorema de Bayes. Probabilidade condicional e independência Cap 5 Cap 5: 15 a 25 Cap 2 Cap 2: Sec 2.2: 4 a 7, Sec 2.3: 8 a 15Cap 4 Cap 4: 8 a 21 Online Statistics (Itens H, I, J, K)
16/03 Probabilidades: Exemplos adicionais. Variáveis Aleatórias - introdução, definição. Distribuição de Probabilidades. Função de (massa de) probabilidade. Distribuição Binomial. Distribuição Hipergeométrica Cap 6, Sec 6.1, 6.2, 6.6.3, 6.6.4 Cap 6: 1 a 6, 20, 22 Cap 3, Sec 3.1 e 3.2 Cap 3: Sec 3.1: 1 a 6, Sec 3.2: 1 a 7 Online Statistics (Itens E, F e M)
21/03 Variáveis aleatórias discretas: definições, valor médio, variância, propriedades, quantis Cap 6, Sec 6.1 a 6.5 e 6.8 Cap 6: 7 a 19, 29 e 30 Cap 3 Cap 3, Sec 3.1 e 3.2 (ver tb B&M): 1 a 6, Sec 3.4: 1 a 10 Curso online (Itens E, F e M)
23/03 Variáveis aleatórias discretas: distribuições uniforme, binomial, geométrica hipergeométrica, Poisson, binomial negativa (Pascal), multinomial Cap 6 Cap 6: 20 a 28 Cap 3 Cap 3, Sec 3.3: 1 a 6, Sec 3.4: 11 a 27
28/03 Probabilidades e Variáveis aleatórias discretas: revisão. Introdução a v.a. contínuas: definição, função de densidade de probabilidade Cap 5, 6 e 7 (Sec 7.1) Cap 7: 1 a 4 Cap 6, Sec 6.1 Cap 6, Sec 6.1: 1 a 3
30/03 Variáveis aleatórias contínuas: Introdução a v.a. contínuas: definição, função de distribuição de probabilidades, exemplos, função acumulada (de distribuição), esperança, variância. Cap 7, Sec 7.1 a 7.3 Cap 7: 1 a 12 Cap 6: Sec 6.1 Cap 6, Sec 6.1: 1 a 5
04/04 Variáveis aleatórias contínuas: algumas funções de densidade de probabilidade: uniforme, exponencial Cap 7, Sec 7.4 Cap 7: 13 e 21, 28, 29, 3140, 41 Cap 6: Sec 6.2 Cap 6, Sec 6.2: 1 a 6, SEc 6.3: 16 a 24
06/04 Distribuição normal, aplicações e aproximação à binomial e Poisson Cap 7, 7.4 e 7.5 Cap 7: 14 a 24 Cap 6, Sec 6.2 Sec 6.2: 7 a 9, Sec 6.3: 25 a 33 Material online
11/04 Exercícios de revisão. Aproximação normal da binomial. Outras distribuições: Erlang e Gamma. Outras distribuições Weibull, <m>chi2</m>, t de Student e F de Snedecor Cap 7 Cap 7, Sec Cap 6 Cap 6 (ver tb B&M) Prob no R: Parte I, Parte II, Parte III
13/04 Usando o computador para cálculos de probabilidade: programas (wx)maxima e R Arquivo de comandos do R
18/04 Funções da variáveis aleatórias. Variáveis bi(multidimensionais) Cap 7, Sec 7.6, Cap 8 Cap 7: 25 a 27, 39, Cap 8: 1, 2, 3, 6, 7, 18, 19, 20 Cap 5 Cap 5: Sec 5.1: 2 a 5 Sec 5.2: 2, 3, 5 e 6
20/04 Prova 1
25/04 Noções de processos estocáticos: exemplos e definição, tempos e estados (discretos e contínuos), modelo probabilístico. Processos de tempo e estados discretos: Cadeia de Markov. Cadeias Finitas, probabilidades de transição, estacionaridade. Matrizes de transição e matrizes estocásticas, transição em M passos, vetor inicial, probabilidades marginais e estados absorventes. ver abaixo
27/04 Prova 1




Complementos

28/02/2011

  1. Assista o vídeo a seguir, reflita, discuta com os colegas e/ou em sala.
    • Peter Donelly no TED Talks - como estatística e probabilidade podem ser usadas e … abusadas
    • note que voce pode habilitar legendas em inglês, português ou outras línguas, se desejar
    • procure anotar as principais mensagens da apresentação
    • se voce tivesse que destacar a descrever 2 (dois) pontos principais da apresentação, quais seriam?
  2. Problemas para discussão:
    1. Desejamos saber a probabilidade de um casal ter duas filhas (meninas) em três situações distintas:
      • apenas sabendo que eles tem duas crianças
      • depois que o pai comenta que tem uma filha (sem dar mais detalhes, sem indicar se é a mais velha ou mais nova etc)
      • você encontra os amigos e eles estão com uma das crianças com eles que é uma menina
    2. Quantas pessoas devem haver em um grupo para que a chance de haver ao menos uma coincidência de aniversários supere 50% ?
    3. Dois jogadores (A e B) vão jogar um jogo que consiste no lançamento de dois dados. Ambos começam com R$ 10,00. Se a soma dos dados for um número ímpar, A para R$ 1,00 para B. Se a soma for par, B para R$ 1,00 para A.
      • quais os possíveis valores em dinheiro que os jogadores podem ter após 2 rodadas? A chance é a mesma para todos esses possíveis valores?
      • quais os possíveis valores em dinheiro que os jogadores podem ter após 3 rodadas? A chance é a mesma para todos esses possíveis valores?
      • o jogo é honesto?

14/03/2011

  • Além dos exercícios indicados nos livros veja neste link execícios (com resolução) que voce pode tentar
  • Assista novamente o vídeo de Peter Donnelly e concentre-se no exemplo do teste de diagnóstico. Estruture o problema e a solução utilizando notação adequada de probabilidades

16/03/2011

  • Veja um vídeo com ainda uma outra explicação para o problema do tese de diagnóstico.
  • Escreva uma rotina em alguma linguagem de programação para o problema do teste de diagnóstico. Considere as possíveis entradas e possíveis saidas. Use o programa para investigar o efeito da taxa básica (prevalência) nos resultados, bem como a acurácia dos testes, representando os resultados de alguma forma adequada (e.g. um gráfico). Use a página de Espaço Aberto para postar seu código.

28/03/2011

  • Considere o problema da distribuição de probabilidades da soma do resultado do lançamento de dois dados. Encontre uma função de probabilidade adequada ao problema e utilize esta função para calcular <m>E(X)</m> e <m>V(X)</m>
  • Considere um tipo dado especial onde cada face tem uma probabilidade de cair proporcional ao seu valor. Considere lançar dois destes dados. Monte o espaço amostra e obtenha a probabilidade de cada ponto. Defina uma v.a. como a soma dos valores das faces e monte a distribuição de probabilidades.
  • Considere avaliar a probabilidade de ter uma “mão” de cinco cartas com exatamente 2 ases em duas situações: a) sabendo que possui um ás de copas, (b) sabendo que possui algum ás na mão. Voce acha que as probabilides am a) e b) sao iguais ou diferentes, e se diferentes qual é maior? Obtenha as probabilidades e verifique sua intuição

04/04/2011

  • Obtenha as expressões de <m>E(X)</m>, <m>V(X)</m>, <m>F(X)</m>, <m>md(X)</m>, <m>q_{0,05}</m> e <m>q_{0,95}</m> para a distribuição uniforme contínua.
  • Obtenha as expressões de <m>E(X)</m>, <m>V(X)</m>, <m>F(X)</m>, <m>md(X)</m>, <m>q_{0,05}</m> e <m>q_{0,95}</m> para a distribuição exponencial.

12/04/2011 e 14/04/2011

<fs large><fc #000080>Usar os programas (wx)maxima e R para resolver os exercícios a seguir</fc></fs>

  1. Fazer gráficos das diversas distribuições de probabilidades vistas nas aulas, variando os valores dos parâmetros e verificando como fica o comportamento da função.
  2. Estudar a distribuição de Weibull, fazer gráficos para diferentes valores dos parâmetros.
  3. Seja uma variável aleatória com distribuição Weibul <m>W(\alpha=2, \beta=20)</m>
    1. Obtenha a expressão e o gráfico da função de densidade <m>f(x)</m> e de distribuição (acumulada) <m>F(x)</m>.
    2. Calcule as probabilidades:
      • <m>P[X > 40]</m>
      • <m>P[X < 50]</m>
      • <m>P[10 < X < 45]</m>
      • <m>P[X < 5 ou X > 40]</m>
    3. Calcule os quantis
      • q tal que <m>P[X > q] = 0.90 </m>
      • q tal que <m>P[X < q] = 0.10</m>
      • <m>q_1</m> e <m>q_2</m> tal que <m>P[q_1 < X < q_2] = 0.50</m>, com 0,25 de probabilidade abaixo de <m>q_1</m> e acima <m>q_2</m>.
  4. Seja uma variável aleatória com distribuição Gamma <m>G(\alpha=3, \beta=10)</m>
    1. Obtenha o gráfico da função de densidade <m>f(x)</m> e de distribuição (acumulada) <m>F(x)</m>.
    2. Verifique como obter as probabilidades:
      • <m>P[X > 50]</m>
      • <m>P[X < 10]</m>
      • <m>P[20 < X < 80]</m>
      • <m>P[X < 5 ou X > 90]</m>
    3. Verifique como obter os quantis
      • q tal que <m>P[X > q] = 0.90 </m>
      • q tal que <m>P[X < q] = 0.10</m>
      • <m>q_1</m> e <m>q_2</m> tal que <m>P[q_1 < X < q_2] = 0.50</m>, com probabilidades abaixo de <m>q_1</m> e acima <m>q_2</m> de 0,25.
    4. Verifique como obter os quartis da distribuição
  5. Verificar as expressões das distribuições <m>t</m>, <m>chi^2</m> e <m>F</m> (ver sessão 7.7 em Bussab e Morettin) e como obter probabilidades q quantis utilizando as tabelas.
  6. Seja <m>X</m> uma variável aleatória com distribuição <m>t_(8)</m> (<m>t</m>-Student com <m>\nu=8</m> graus de liberdade). Obtenha usando a tabela da distribuição:
    1. <m>P[X > 1.5]</m>
    2. <m>P[-2 < X < 2]</m>
    3. <m>k</m> tal que <m>P[|X| < k ] = 0.80</m>
    4. <m>k</m> tal que <m>P[X < k ] = 0.10</m>
    5. os quartis da distribuição
  7. Seja <m>X</m> uma variável aleatória com distribuição <m>\chi_(12)</m> (<m>qui-quadrado</m> com <m>\nu=12</m> graus de liberdade). Obtenha usando a tabela da distribuição:
    1. <m>P[X > 20]</m>
    2. <m>P[X < 5]</m>
    3. <m>P[10 < X < 25]</m>
    4. <m>k</m> tal que <m>P[|X| < k ] = 0.80</m>
    5. <m>k</m> tal que <m>P[X < k ] = 0.10</m>
    6. os quartis da distribuição



<fs large>Usando o programa R para calcular probabilidades - Uma introdução</fs>
Para iniciar o R na linha de comando do Linux basta digitar:

$ R

<note>Alternativamente a utilizar diretamente na linha de comandos, é possível utilizar o R de dentro de alguns editores como o gedit, vim ou (x)emacs, além de IDE's específicas como o RKward e Rstudio.

Para mais detalhes sobre interfaces gráficas para o R consulte a página de R GUI projects </note>

25/04/2011

Parte 1

  1. Considere a matriz de transição do exemplo 2 da aula. Escreva um programa para simular realizações desta cadeia (mostre resulçtados em um gráfico).
    <latex>

P = \left[\begin{array}{cc} 1/3 & 2/3
2/3 & 1/3 \end{array}\right] </latex>

  1. Considere agora uma matriz de transição mais geral dada a seguir. Generalize seu programa do exemplo anterior e obtenha simulações para diferentes valores de p. Escreva ainda uma rotina que receba os dados de uma cadeia e retorne uma estimativa de p. Use esta rotina para obter valores estimados de p para suas diferentes simulações (com o mesmo p e variando p)
    <latex>

P = \left[\begin{array}{cc} p & 1-p
1-p & p \end{array}\right] </latex>

  1. Idem anterior com \\<latex>

P=\left[\begin{array}{cc} p_1 & 1-p_1
1-p_2 & p_2 \end{array}\right] </latex>

  1. Escreva agora uma rotina que calcule as probabilidades dos estados da cadeia em um passo (tempo) qualquer, a partir da matriz de transição e de um vetor <m>\nu</m> de probabilidades iniciais. Experimente (por simulação) com diferentes valores de P e <m>\nu</m>
  2. Idem anterior para um determinado inicial.
  3. Resuma as conclusões que podem ser obtidas analisando os resultados das simulações anteriores

Parte 2

  1. Estude o comportamento da cadeia definida pelo exemplo 1 visto em aula.
  2. Modificar a matriz P dada colocando na ultima linha: (0 0 0 0 0 1). Estudo o comportamento da cadeia.

Parte 3

  1. Monte a matriz de transição P e estude as características da cadeia para o exemplo genético onde os pais tem genótipos AA, Aa ou aa. Analise e inspecione (tb por simulação) o comportamento para diferentes valores iniciais.

QR Code
QR Code disciplinas:ce003o-2011-01:historico (generated for current page)